算法系列--动态规划--特殊的状态表示--分析重复子问题(上)

简介: 算法系列--动态规划--特殊的状态表示--分析重复子问题

💕"轻舟已过万重山!"💕

作者:Lvzi

文章主要内容:算法系列–算法系列–动态规划–特殊的状态表示–分析重复子问题

大家好,今天为大家带来的是算法系列--动态规划--特殊的状态表示--分析重复子问题

一.组合总数IV

链接:

https://leetcode.cn/problems/combination-sum-iv/

分析:

本题名字叫做组合问题,但实际上是一个排列问题,需要说明的是背包问题解决的是有限制条件下的"组合"问题,本题是一个排列问题,其实根本就无法使用背包问题的思路解决

那该如何解决呢?而且这道题还不太容易分析状态表示,其实这是动态规划问题中比较难的一种问题,状态表示的确立应该是:在分析问题的时候,发现重复的子问题,并抽象出状态表示

目的是求出总和等于target的所有排列方式,如果固定第一个数为a,那么就是求出总和等于target-a的所有排列方式,这里的重复子问题就是求出总和等于某个数的所有排列方式

状态表示:

  • dp[i]:总和等于i的所有排列方式

状态转移方程:

还是根据最后一个位置的状态划分问题

nums[j]表示的是数组中任意的一个数,只要符合条件(i >= nums[j]),都可以作为组成总和为i的排列方式的一种,那么只需在前面判断组成和为i-nums[j]的所有排列数即可,即dp[i - nums[j](注意本题是排列,排列!!!是区分顺序的!!!)

再次明确,本题是一个排列问题,是从数组中的所有元素选择出一些排列方式,使总和为target就行,在这个过程中,必须要保证添加的数字不能超过总和

初始化:

  • dp[0] = 1:凑出总和为0的所有方式–>什么也不选–>空集也算一种情况

算法系列--动态规划--特殊的状态表示--分析重复子问题(下)https://developer.aliyun.com/article/1480869?spm=a2c6h.13148508.setting.17.352e4f0eqTYwhH

目录
相关文章
|
9天前
|
缓存 算法 搜索推荐
Java中的算法优化与复杂度分析
在Java开发中,理解和优化算法的时间复杂度和空间复杂度是提升程序性能的关键。通过合理选择数据结构、避免重复计算、应用分治法等策略,可以显著提高算法效率。在实际开发中,应该根据具体需求和场景,选择合适的优化方法,从而编写出高效、可靠的代码。
24 6
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
63 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
114 2
动态规划算法学习三:0-1背包问题
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
82 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
194 0
动态规划算法学习二:最长公共子序列
|
3月前
|
算法
PID算法原理分析
【10月更文挑战第12天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
算法
PID算法原理分析及优化
【10月更文挑战第6天】PID控制方法从提出至今已有百余年历史,其由于结构简单、易于实现、鲁棒性好、可靠性高等特点,在机电、冶金、机械、化工等行业中应用广泛。
|
3月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
187 0

热门文章

最新文章