LeetCode2045. 到达目的地的第二短时间
城市用一个 双向连通 图表示,图中有 n 个节点,从 1 到 n 编号(包含 1 和 n)。图中的边用一个二维整数数组 edges 表示,其中每个 edges[i] = [ui, vi] 表示一条节点 ui 和节点 vi 之间的双向连通边。每组节点对由 最多一条 边连通,顶点不存在连接到自身的边。穿过任意一条边的时间是 time 分钟。
每个节点都有一个交通信号灯,每 change 分钟改变一次,从绿色变成红色,再由红色变成绿色,循环往复。所有信号灯都 同时 改变。你可以在 任何时候 进入某个节点,但是 只能 在节点 信号灯是绿色时 才能离开。如果信号灯是 绿色 ,你 不能 在节点等待,必须离开。
第二小的值 是 严格大于 最小值的所有值中最小的值。
例如,[2, 3, 4] 中第二小的值是 3 ,而 [2, 2, 4] 中第二小的值是 4 。
给你 n、edges、time 和 change ,返回从节点 1 到节点 n 需要的 第二短时间 。
注意:
你可以 任意次 穿过任意顶点,包括 1 和 n 。
你可以假设在 启程时 ,所有信号灯刚刚变成 绿色 。
示例 1:
输入:n = 5, edges = [[1,2],[1,3],[1,4],[3,4],[4,5]], time = 3, change = 5
输出:13
解释:
上面的左图展现了给出的城市交通图。
右图中的蓝色路径是最短时间路径。
花费的时间是:
- 从节点 1 开始,总花费时间=0
- 1 -> 4:3 分钟,总花费时间=3
- 4 -> 5:3 分钟,总花费时间=6
因此需要的最小时间是 6 分钟。
右图中的红色路径是第二短时间路径。 - 从节点 1 开始,总花费时间=0
- 1 -> 3:3 分钟,总花费时间=3
- 3 -> 4:3 分钟,总花费时间=6
- 在节点 4 等待 4 分钟,总花费时间=10
- 4 -> 5:3 分钟,总花费时间=13
因此第二短时间是 13 分钟。
示例 2:
输入:n = 2, edges = [[1,2]], time = 3, change = 2
输出:11
解释:
最短时间路径是 1 -> 2 ,总花费时间 = 3 分钟
第二短时间路径是 1 -> 2 -> 1 -> 2 ,总花费时间 = 11 分钟
提示:
2 <= n <= 104
n - 1 <= edges.length <= min(2 * 104, n * (n - 1) / 2)
edges[i].length == 2
1 <= ui, vi <= n
ui != vi
不含重复边
每个节点都可以从其他节点直接或者间接到达
1 <= time, change <= 103
深度优先
经过的边数相同,则行驶时间相同,等待时间也相同。所以本题等效与求严格经过边数第二少。令经过最少的边数是x,则严格第二少的边数只能是x+1或x+2。因为:到达目的地后返回一个节点,再到达目的地,经过的边数是x+2。
本问题等于与:
一,计算最少经过边数x。
二,能否经过x+1条边到达目的的。
每个节点除了记录最少边数,还要记录另外一个状态i1:
初始为0,第一次到达是变成1。加入队列。
1变2的条件:新经过的边数等于x+1。加入队列。
2不会发生的变化。
每个节点最多入队两次。估计时间复杂度是:O(n)。
目的地的i1,如果为1,则严格第二少的边数为x+1,否则为x+2。
通过边数计算时间:
如果总时间time / change 是奇数需要等待 等待时间 change - (time/change)。
代码
核心代码
class CNeiBo2 { public: CNeiBo2(int n, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase) { m_vNeiB.resize(n); } CNeiBo2(int n, vector<vector<int>>& edges, bool bDirect, int iBase = 0) :m_iN(n), m_bDirect(bDirect), m_iBase(iBase) { m_vNeiB.resize(n); for (const auto& v : edges) { m_vNeiB[v[0] - iBase].emplace_back(v[1] - iBase); if (!bDirect) { m_vNeiB[v[1] - iBase].emplace_back(v[0] - iBase); } } } inline void Add(int iNode1, int iNode2) { iNode1 -= m_iBase; iNode2 -= m_iBase; m_vNeiB[iNode1].emplace_back(iNode2); if (!m_bDirect) { m_vNeiB[iNode2].emplace_back(iNode1); } } const int m_iN; const bool m_bDirect; const int m_iBase; vector<vector<int>> m_vNeiB; }; class Solution { public: int secondMinimum(int n, vector<vector<int>>& edges, int time, int change) { CNeiBo2 neiBo(n, edges, false, 1); queue<pair<int,int>> que; vector<int> vDis(n), vStatu(n); que.emplace(0,0); vStatu[0] = 1; while (que.size()) { const auto [cur,curDis] = que.front(); que.pop(); for (const auto& next : neiBo.m_vNeiB[cur]) { const int iNewDis = curDis + 1; if (0 == vStatu[next]) { vDis[next] = iNewDis; vStatu[next] = 1; que.emplace(next,iNewDis); } else if ((1 == vStatu[next])&&( vDis[next]+1 == iNewDis)) { vStatu[next] = 2; que.emplace(next, iNewDis); } } } const int iEdgeNum = (1 == vStatu.back()) ? (vDis.back() + 2) : (vDis.back() + 1); int iTime = 0; for (int i = 1; i <= iEdgeNum; i++) { iTime += time; if ((iTime / change) & 1) { if (iEdgeNum != i) { iTime += (change - (iTime % change)); } } } return iTime; } };
测试用例
template<class T,class T2> void Assert(const T& t1, const T2& t2) { assert(t1 == t2); } template void Assert(const vector& v1, const vector& v2) { if (v1.size() != v2.size()) { assert(false); return; } for (int i = 0; i < v1.size(); i++) { Assert(v1[i], v2[i]); } } int main() { int n, time, change; vector<vector> edges; { Solution sln; n = 5, edges = { {1,2},{1,3},{1,4},{3,4},{4,5} }, time = 3, change = 5; auto res = sln.secondMinimum(n, edges, time, change); Assert(13, res); } { Solution sln; n = 2, edges = { {1,2} }, time = 3, change = 2; auto res = sln.secondMinimum(n, edges, time, change); Assert(11, res); } }
2023年4月
class Solution { public: int secondMinimum(int n, vector<vector>& edges, int time, int change) { m_vNeiB.resize(n + 1); m_vDis.assign(n + 1,INT_MAX); m_vDis2.assign(n + 1, INT_MAX); for (const auto& e : edges) { m_vNeiB[e[0]].emplace_back(e[1]); m_vNeiB[e[1]].emplace_back(e[0]); } std::queue<pair<int,int>> que; que.emplace(1,0); while (que.size()) { const int iCur = que.front().first; const int len = que.front().second; que.pop(); for (const auto& next : m_vNeiB[iCur]) { const int iNewLen = len + 1; if (iNewLen >= m_vDis2[next]) { continue; } que.emplace(next, iNewLen); if (iNewLen < m_vDis[next]) { m_vDis[next] = iNewLen; } else if (iNewLen != m_vDis[next]) { m_vDis2[next] = iNewLen; } } } int tmp = m_vDis2[n]; int iRet = 0; while (tmp–) { if ((iRet / change) & 1) { iRet += (change - iRet%change); } iRet += time; } return iRet; } vector<vector> m_vNeiB; vector m_vDis; vector m_vDis2; };
扩展阅读
视频课程
有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快
速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
相关
下载
想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653
我想对大家说的话 |
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。