【算法与数据结构】堆排序&&TOP-K问题

简介: 【算法与数据结构】堆排序&&TOP-K问题

📝堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
    升序:建大堆
    降序:建小堆
  2. 利用堆删除思想来进行排序
    建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

  1. 堆排序代码----->升序:建大堆
    堆排序是通过建立一个大顶堆或小顶堆,然后将堆顶元素与末尾元素交换,并重新调整堆结构,这样重复地交换和调整得到有序序列。在升序排序时,我们希望第一个元素是最大的,所以需要建立大顶堆,这样堆顶元素就是当前所有元素中的最大值。
//升序,建大堆
//O(N*logN)

//定义一个交换函数,用于交换两个元素的值
void Swap(int* px, int* py)
{
  int temp = *px;
  *px = *py;
  *py = temp;
}
//将以parent为根节点的子树进行向下调整,使其满足大堆的性质
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1; //左孩子节点的下标
  while (child < n)
  {
    //找到左右孩子节点中较大的一个
    if (child + 1 < n && a[child + 1] > a[child])
    {
      child++;
    }
    //如果孩子节点的值大于父节点的值,则交换位置
    if (a[child] > a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}

//堆排序函数
void HeapSort(int* a, int n)
{
  //将数组a直接建堆,使其满足大堆的性质
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  int end = n - 1; //用于记录堆的末尾位置
  while (end > 0)
  {
    //将堆顶元素与末尾元素交换位置,即将最大值放到末尾
    Swap(&a[0], &a[end]);
    //对除了末尾元素外的部分进行向下调整,使其满足大堆的性质
    AdjustDown(a, end, 0);
    end--;
  }

}
int main()
{
  int a[] = { 3,9,5,2,7,8,10,1,4 };
  printf("堆升序前\n");
  for (int i = 0; i < sizeof(a) / sizeof(int); i++)
  {
    printf("%d ", a[i]);
  }
  //堆升序,建大堆
  HeapSort(a, sizeof(a) / sizeof(int));
  printf("\n堆升序后\n");
  for (int i = 0; i < sizeof(a) / sizeof(int); i++)
  {
    printf("%d ", a[i]);
  }
  printf("\n");
  return 0;

}

代码运行:

1.堆排序代码----->降序:建小堆

而在降序排序时,我们希望第一个元素是最小的。如果还建立大顶堆,那么堆顶元素会是最大值,这与我们希望的降序结果不符。所以在降序排序时,我们需要建立一个小顶堆。这样堆顶元素就是当前所有元素中的最小值,和我们希望的降序结果一致。通过每次交换堆顶(最小值)和末尾元素,可以实现数组从小到大排列,也就是降序排序结果。

#include <stdio.h>
// 交换两个元素的值
void Swap(int* px, int* py)
{
  int temp = *px;
  *px = *py;
  *py = temp;
}
// 将以parent为根节点的子树调整为小堆
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1; // 左孩子节点的下标
  while (child < n)
  {
    // 找到左右孩子节点中值较小的节点
    if (child + 1 < n && a[child + 1] < a[child])
    {
      child++;
    }
    // 如果子节点的值小于父节点的值,则交换父子节点的值
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
// 堆排序
void HeapSort(int* a, int n)
{
  // 建堆:从最后一个非叶子节点开始,依次向上调整子树为小堆
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  int end = n - 1; // 堆的最后一个元素的下标
  while (end > 0)
  {
    // 将堆顶元素(最小元素)与堆的最后一个元素交换位置
    Swap(&a[0], &a[end]);
    // 将除了最后一个元素之外的部分重新调整为小堆
    AdjustDown(a, end, 0);
    end--;
  }

}
int main()
{
  int a[] = { 3,9,5,2,7,8,10,1,4 };
  printf("堆降序前\n");
  for (int i = 0; i < sizeof(a) / sizeof(int); i++)
  {
    printf("%d ", a[i]);
  }
  // 使用堆排序进行降序排序
  HeapSort(a, sizeof(a) / sizeof(int));
  printf("\n堆降序后\n");
  for (int i = 0; i < sizeof(a) / sizeof(int); i++)
  {
    printf("%d ", a[i]);
  }
  printf("\n");
  return 0;

}

🌠 TOP-K问题

TOP-K问题是数据挖掘和信息检索中的一个重要问题。


TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

TOP-K问题是数据挖掘和信息检索中的一个重要问题。


TOP-K问题的含义是:给定一个集合,找出其中值最大或最小的前K个元素。


常见的TOP-K问题有:


  1. 查找文档集合中与查询条件最相关的前K篇文档。这在搜索引擎中很常见。
  2. 从用户评分最高的物品中找出前K个最受欢迎的物品。
  3. 从数据库中找出收入前K高的用户。
  4. 从候选人中找出支持率前K高的候选人,专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。。


TOP-K问题的一般解法包括:


  • 排序法:直接对全集排序,取前K个元素。时间复杂度O(nlogn)
  • 堆排序法:使用小顶堆或大顶堆维护前K个元素,时间复杂度O(nlogk)
  • 选择算法:每次选择当前值最大/小的元素加入结果集,时间复杂度O(nlogk)
  • 空间优化算法:如QuickSelect,找到第K个元素的位置而不是排序全集。
  • 桶排序法:如果值范围有限,可以使用桶排序提升效率。
  • 索引支持的算法:如果有索引支持,可以利用索引更快找出TOP-K,如B+树。
  • 对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:


1.用数据集合中前K个元素来建堆

前k个最大的元素,则建小堆

前k个最小的元素,则建大堆

2.用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

🌠造数据

首先我们要TOP-K,那得有数据,先来生成数据,那就生成随机数据到文件。

void CreateNData()
{
  //造数据
  int n = 100000;
  srand(time(0));//使用时间作为随机数种子
  const char* file = "data.txt";//数据文件名
  FILE* fin = fopen(file, "w");//打开文件用于写入
  if (fin == NULL)//检查文件是否打开成功
  {
    perror("fopen error");//输出打开错误信息
    return;
  }

  for (int i = 0; i < n; ++i)//循环写入n行数据
  {
    int x = (rand() + i) % 1000000;//生成0-999999之间的随机数
    fprintf(fin, "%d\n", x);//写入一行数据
  }
  // 别忘了关闭文件哦
  fclose(fin);
}

rand()函数产生的随机数范围是0-RAND_MAX,在C/C++标准库中,rand()范围是0到32767

i的范围是0-9999,因为n定义为10000,所以rand()结果加i范围是:0 + 0 = 0,32767 + 99999 =132,766,没有超过1000000,但取余可以实现随机数更均匀地分布在0-999999范围内

🌉topk找最大

1、用前10个数据建小堆

2、后续数据跟堆顶数据比较,如果比堆顶数据大,就替代堆顶,进堆

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <time.h>

void Swap(int* px, int* py)
{
  int tmp = *px;
  *px = *py;
  *py = tmp;
}


void AdjustDown(int* a, int n, int parent)
{ //a是数组指针,n是数组长度,parent是当前需要下调的父结点索引

  int child = parent * 2 + 1;
  //child表示父结点parent的左孩子结点索引,因为是完全二叉堆,可以通过parent和2计算得到

  while (child < n)
  {
    //如果左孩子存在

    if (child + 1 < n && a[child + 1] < a[child])
    {
      //如果右孩子也存在,并且右孩子值小于左孩子,则child指向右孩子
      child++;
    }
    if (a[child] < a[parent])
      //如果孩子结点值小于父结点值,则需要交换
    {
      Swap(&a[child], &a[parent]);
      //交换孩子和父结点
      parent = child;
      //父结点下移为当前孩子结点

      child = parent * 2 + 1;

      //重新计算新的左孩子结点索引

    }
    else
    {
      break;
    }
  }
}
void topk()
{
  printf("请输入k->");
  int k = 0;
  scanf("%d", &k);
  const char* file = "data.txt";
  //打开文件
  FILE* fout = fopen(file, "r");
  if (fout == NULL)
  {
    perror("malloc fail");
    return;
  }
  //临时变量读取文件数据 
  int val = 0;
  //分配内存用于保存最小堆
  int* minheap = (int*)malloc(sizeof(int) * k);
  if(minheap ==NULL)
  {
    perror("malloc fail");
    return;
  }
  //初始化堆,读取文件前k个数据构建最小堆
  for (int i = 0; i < k; i++)
  {
    fscanf(fout, "%d", &minheap[i]);
  }
  
  //建个小堆
  for (int i = (k - 1 - 1) / 2; i >=0; i--)
  {
    AdjustDown(minheap, k, i);
  }

  int x = 0;
  while (fscanf(fout, "%d", &x) != EOF)
  {
    //读取剩余数据,比对顶的值大,就替换他进堆
    if (x > minheap[0])
    {
      //替换堆顶值,并调用下滤调整堆结构
      minheap[0] = x;
      AdjustDown(minheap, k, 0);
    }
  }

  for (int i = 0; i < k; i++)
  {
      //输出堆中保存的前k个最大值 
    printf("%d ", minheap[i]);
  }
  printf("\n");
  fclose(fout);

}

int main()
{
  CreateNData();
  topk();
}

输出:

的确是五个数,怎么验证他是10万个数中最大的那五个数呢?

OK!用记事本打开该文件的data.txt,随机找五个数改大点,比如到百万,再运行,能不能找出这五个数,能就对了。

再次运行效果图:


🚩总结

感谢你的收看,如果文章有错误,可以指出,我不胜感激,让我们一起学习交流,如果文章可以给你一个小小帮助,可以给博主点一个小小的赞😘

相关文章
|
24天前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
47 9
 算法系列之数据结构-二叉树
|
21天前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
40 3
 算法系列之数据结构-Huffman树
|
27天前
|
存储 搜索推荐 算法
算法系列之排序算法-堆排序
堆排序(Heap Sort)是一种基于堆数据结构的比较排序算法。它的时间复杂度为 $O(nlogn)$,并且是一种原地排序算法(即不需要额外的存储空间)。堆排序的核心思想是利用堆的性质来维护一个最大堆或最小堆,然后逐步将堆顶元素(最大值或最小值)取出,放到数组的末尾,最终得到一个有序的数组。
34 8
算法系列之排序算法-堆排序
|
23天前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
63 22
|
1月前
|
存储 机器学习/深度学习 算法
C 408—《数据结构》算法题基础篇—链表(下)
408考研——《数据结构》算法题基础篇之链表(下)。
97 29
|
1月前
|
存储 算法 C语言
C 408—《数据结构》算法题基础篇—链表(上)
408考研——《数据结构》算法题基础篇之链表(上)。
125 25
|
1月前
|
存储 人工智能 算法
C 408—《数据结构》算法题基础篇—数组(通俗易懂)
408考研——《数据结构》算法题基础篇之数组。(408算法题的入门)
81 23
|
3月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
93 20
|
2月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
72 2
|
9天前
|
算法 数据安全/隐私保护 异构计算
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。