【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

简介: 【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

多级缓存设计案例

从用户发出请求到最底层的数据库,实际上会经过多个节点。因此,在整个链路上都可以设置缓存。根据缓存最近原则,将缓存放置在离用户最近的位置可以最大限度地提高系统响应效率,并明显提升系统的吞吐量,从而大大降低对后端的压力。

在整个链路流程中,可以添加缓存的地方包括:发起请求时的浏览器/客户端缓存、边缘缓存/CDN、反向代理(如Nginx)缓存、远程缓存、进程内缓存以及数据库缓存。



上面图中是一种常用的服务端多级缓存设计技术方案:

  • 浏览器/客户端缓存:可以通过设置HTTP缓存头来控制客户端的缓存行为,减少发送重复请求的次数。
  • 边缘缓存/CDN:利用内容分发网络(CDN),将静态资源缓存在全球各个边缘节点上,提供更快速的访问速度。
  • 反向代理缓存:配置反向代理服务器(如Nginx)来缓存静态和动态内容,减少请求的转发到后端服务器的次数。
  • 远程缓存:使用分布式缓存系统(如Redis、Memcached等)作为后端服务的缓存层,提高数据访问速度。
  • 进程内缓存:在应用程序内部使用缓存来存储频繁访问的数据,减少对数据库的访问次数。
  • 数据库缓存:使用数据库自身的缓存机制(如MySQL查询缓存、Redis作为数据库缓存)来加速查询结果的返回。

通过合理地设计和配置多级缓存,可以提升系统性能和吞吐量,实现更高效的请求处理和数据访问。

多级缓存处理流程

多级缓存模式的处理主要流程以及整体的缓存设计如下:



  1. 请求首先到达Nginx,Nginx首先检查本地缓存,如果存在缓存数据则直接返回。为了实现负载均衡和分布式路由策略,我们采用轮询方式来分布访问压力,或者可以考虑在流量达到一定阈值时切换到一致性哈希策略,以提高缓存命中率。需要注意的是,一致性哈希策略可能会导致单点压力过大的问题。
  2. 如果Nginx缓存未命中,则查询分布式缓存。为了实现高可用性和提高系统吞吐量,我们通常采用主从结构的远程分布式缓存。在这一步中,我们将读取从缓存服务集群中的数据,并在命中缓存时返回数据。
  3. 如果分布式缓存未命中,则查询应用本地缓存(堆内或堆外缓存)。同样,我们可以使用轮询或一致性哈希作为路由策略。如果命中了本地缓存,则返回数据,并将数据写回Nginx缓存中。为了避免由于缓存服务故障而导致数据库过载,我们可以尝试读取主缓存服务。
  4. 如果所有缓存均未命中,则查询数据库并返回数据,并异步将数据写回主缓存和应用本地缓存。主缓存通过主从同步机制将数据同步到从缓存服务集群中。在这一步中,需要注意多个应用实例异步写入主缓存时可能会导致数据乱序的问题。

针对以上多级缓存设计,可以通过引入热点发现系统来发现非预期的热点数据,利用flume订阅Nginx日志,然后通过消息进行消费,最后通过storm等实时计算框架进行热点数据的统计,当监控发现到热点数据,将其推送到各个缓存节点上

缓存意义及总结

为了追求高性能,开发者经常使用缓存作为解决系统性能问题的方法。然而,如果缓存使用不当,它可能会适得其反,成为系统的毒药,增加了维护成本和复杂度。缓存并非一刀切的解决方案,但在高并发情况下,通过缓存可以快速响应请求,提升系统吞吐量和支撑更高的并发用户数。在现实生活中,使用缓存来优化系统性能的例子很多。

即使没有机会挑战高并发互联网架构和大量访问流量的情况,我们也应该深入分析通用的技术方案。尤其在缓存使用中,高并发带来的数据一致性问题有许多意想不到的情况,这些分析是开发者建立方法论和培养思路的重要训练途径。学习每种技术组件时,通用解决方案是经过历史经验积累的智慧,需要我们细心品味和应用。

相关文章
|
2天前
|
NoSQL 分布式数据库 MongoDB
【MongoDB 专栏】MongoDB 的分布式事务解决方案
【5月更文挑战第11天】本文探讨了MongoDB的分布式事务处理,涉及两阶段提交(2PC)、TCC补偿事务、分布式锁和幂等处理。2PC通过协调者与参与者确保数据一致性,而TCC提供更高性能和容错性。分布式锁解决并发冲突,幂等处理保证事务正确性。根据业务需求选择合适方案,并关注性能、可靠性和容错。
【MongoDB 专栏】MongoDB 的分布式事务解决方案
|
2天前
|
缓存 NoSQL 应用服务中间件
Redis多级缓存
Redis多级缓存
11 0
|
2天前
|
缓存 NoSQL 搜索推荐
Redis缓存雪崩穿透等解决方案
本文讨论了缓存使用中可能出现的问题及其解决方案。首先,缓存穿透是指查询数据库中不存在的数据,导致请求频繁到达数据库。解决方法包括数据校验、缓存空值和使用BloomFilter。其次,缓存击穿是大量请求同一失效缓存项,可采取监控、限流或加锁策略。再者,缓存雪崩是大量缓存同时失效,引发数据库压力。应对措施是避免同一失效时间,分散缓存过期。接着,文章介绍了Spring Boot中Redis缓存的配置,包括缓存null值以防止穿透,并展示了自定义缓存过期时间的实现,以避免雪崩效应。最后,提供了在`application.yml`中配置不同缓存项的个性化过期时间的方法。
|
2天前
|
缓存 监控 数据库
分布式系统中缓存穿透问题与解决方案
在分布式系统中,缓存技术被广泛应用以提高系统性能和响应速度。然而,缓存穿透是一个常见而严重的问题,特别是在面对大规模请求时。本文将深入探讨缓存穿透的原因、影响以及一些有效的解决方案,以确保系统在面对这一问题时能够保持稳定和高效。
38 13
|
2天前
|
缓存 编解码
FFmpeg开发笔记(十四)FFmpeg音频重采样的缓存
FFmpeg在视频流重编码和音频重采样中使用缓存机制。在音频文件格式转换时,特别是对于帧长度不固定的格式如ogg、amr、wma,需处理重采样缓存。通过调用`swr_convert`,传入空输入和0大小来清空缓存。在`swrmp3.c`中,修改帧样本数处理,并在循环结束后添加代码以冲刷缓存。编译并运行程序,将ogg文件重采样为MP3,日志显示操作成功,播放转换后的文件确认功能正常。
32 7
FFmpeg开发笔记(十四)FFmpeg音频重采样的缓存
|
2天前
|
缓存 NoSQL 搜索推荐
Redis缓存雪崩穿透等解决方案
本文讨论了缓存使用中的三个问题:缓存穿透、缓存击穿和缓存雪崩。为解决这些问题,提出了相应策略。对于缓存穿透,建议数据校验和缓存空值;缓存击穿可采用监控扩容、服务限流或加锁机制;缓存雪崩则需避免大量缓存同时过期,可设置随机过期时间。此外,文章还介绍了Spring Boot中Redis缓存配置,包括全局设置及自定义缓存过期时间的方法。
|
2天前
|
消息中间件 缓存 NoSQL
Redis经典问题:缓存雪崩
本文介绍了Redis缓存雪崩问题及其解决方案。缓存雪崩是指大量缓存同一时间失效,导致请求涌入数据库,可能造成系统崩溃。解决方法包括:1) 使用Redis主从复制和哨兵机制提高高可用性;2) 结合本地ehcache缓存和Hystrix限流降级策略;3) 设置随机过期时间避免同一时刻大量缓存失效;4) 使用缓存标记策略,在标记失效时更新数据缓存;5) 实施多级缓存策略,如一级缓存失效时由二级缓存更新;6) 通过第三方插件如RocketMQ自动更新缓存。这些策略有助于保障系统的稳定运行。
281 1
|
2天前
|
存储 消息中间件 缓存
Redis缓存技术详解
【5月更文挑战第6天】Redis是一款高性能内存数据结构存储系统,常用于缓存、消息队列、分布式锁等场景。其特点包括速度快(全内存存储)、丰富数据类型、持久化、发布/订阅、主从复制和分布式锁。优化策略包括选择合适数据类型、设置过期时间、使用Pipeline、开启持久化、监控调优及使用集群。通过这些手段,Redis能为系统提供高效稳定的服务。
|
2天前
|
存储 缓存 NoSQL
【Go语言专栏】Go语言中的Redis操作与缓存应用
【4月更文挑战第30天】本文探讨了在Go语言中使用Redis进行操作和缓存应用的方法。文章介绍了Redis作为高性能键值存储系统,用于提升应用性能。推荐使用`go-redis/redis`库,示例代码展示了连接、设置、获取和删除键值对的基本操作。文章还详细阐述了缓存应用的步骤及常见缓存策略,包括缓存穿透、缓存击穿和缓存雪崩的解决方案。利用Redis和合适策略可有效优化应用性能。
|
2天前
|
缓存 NoSQL 关系型数据库
【Redis】Redis 缓存重点解析
【Redis】Redis 缓存重点解析
13 0

热门文章

最新文章