【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

简介: 【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

多级缓存设计案例

从用户发出请求到最底层的数据库,实际上会经过多个节点。因此,在整个链路上都可以设置缓存。根据缓存最近原则,将缓存放置在离用户最近的位置可以最大限度地提高系统响应效率,并明显提升系统的吞吐量,从而大大降低对后端的压力。

在整个链路流程中,可以添加缓存的地方包括:发起请求时的浏览器/客户端缓存、边缘缓存/CDN、反向代理(如Nginx)缓存、远程缓存、进程内缓存以及数据库缓存。



上面图中是一种常用的服务端多级缓存设计技术方案:

  • 浏览器/客户端缓存:可以通过设置HTTP缓存头来控制客户端的缓存行为,减少发送重复请求的次数。
  • 边缘缓存/CDN:利用内容分发网络(CDN),将静态资源缓存在全球各个边缘节点上,提供更快速的访问速度。
  • 反向代理缓存:配置反向代理服务器(如Nginx)来缓存静态和动态内容,减少请求的转发到后端服务器的次数。
  • 远程缓存:使用分布式缓存系统(如Redis、Memcached等)作为后端服务的缓存层,提高数据访问速度。
  • 进程内缓存:在应用程序内部使用缓存来存储频繁访问的数据,减少对数据库的访问次数。
  • 数据库缓存:使用数据库自身的缓存机制(如MySQL查询缓存、Redis作为数据库缓存)来加速查询结果的返回。

通过合理地设计和配置多级缓存,可以提升系统性能和吞吐量,实现更高效的请求处理和数据访问。

多级缓存处理流程

多级缓存模式的处理主要流程以及整体的缓存设计如下:



  1. 请求首先到达Nginx,Nginx首先检查本地缓存,如果存在缓存数据则直接返回。为了实现负载均衡和分布式路由策略,我们采用轮询方式来分布访问压力,或者可以考虑在流量达到一定阈值时切换到一致性哈希策略,以提高缓存命中率。需要注意的是,一致性哈希策略可能会导致单点压力过大的问题。
  2. 如果Nginx缓存未命中,则查询分布式缓存。为了实现高可用性和提高系统吞吐量,我们通常采用主从结构的远程分布式缓存。在这一步中,我们将读取从缓存服务集群中的数据,并在命中缓存时返回数据。
  3. 如果分布式缓存未命中,则查询应用本地缓存(堆内或堆外缓存)。同样,我们可以使用轮询或一致性哈希作为路由策略。如果命中了本地缓存,则返回数据,并将数据写回Nginx缓存中。为了避免由于缓存服务故障而导致数据库过载,我们可以尝试读取主缓存服务。
  4. 如果所有缓存均未命中,则查询数据库并返回数据,并异步将数据写回主缓存和应用本地缓存。主缓存通过主从同步机制将数据同步到从缓存服务集群中。在这一步中,需要注意多个应用实例异步写入主缓存时可能会导致数据乱序的问题。

针对以上多级缓存设计,可以通过引入热点发现系统来发现非预期的热点数据,利用flume订阅Nginx日志,然后通过消息进行消费,最后通过storm等实时计算框架进行热点数据的统计,当监控发现到热点数据,将其推送到各个缓存节点上

缓存意义及总结

为了追求高性能,开发者经常使用缓存作为解决系统性能问题的方法。然而,如果缓存使用不当,它可能会适得其反,成为系统的毒药,增加了维护成本和复杂度。缓存并非一刀切的解决方案,但在高并发情况下,通过缓存可以快速响应请求,提升系统吞吐量和支撑更高的并发用户数。在现实生活中,使用缓存来优化系统性能的例子很多。

即使没有机会挑战高并发互联网架构和大量访问流量的情况,我们也应该深入分析通用的技术方案。尤其在缓存使用中,高并发带来的数据一致性问题有许多意想不到的情况,这些分析是开发者建立方法论和培养思路的重要训练途径。学习每种技术组件时,通用解决方案是经过历史经验积累的智慧,需要我们细心品味和应用。

相关实践学习
Serverless极速搭建Hexo博客
本场景介绍如何使用阿里云函数计算服务命令行工具快速搭建一个Hexo博客。
相关文章
|
5天前
|
监控 算法 网络协议
|
17天前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
2月前
|
机器学习/深度学习 缓存 NoSQL
深度学习在图像识别中的应用与挑战后端开发中的数据缓存策略
本文深入探讨了深度学习技术在图像识别领域的应用,包括卷积神经网络(CNN)的原理、常见模型如ResNet和VGG的介绍,以及这些模型在实际应用中的表现。同时,文章也讨论了数据增强、模型集成等改进性能的方法,并指出了当前面临的计算资源需求高、数据隐私等挑战。通过综合分析,本文旨在为深度学习在图像识别中的进一步研究和应用提供参考。 本文探讨了后端开发中数据缓存的重要性和实现方法,通过具体案例解析Redis在实际应用中的使用。首先介绍了缓存的基本概念及其在后端系统性能优化中的作用;接着详细讲解了Redis的常见数据类型和应用场景;最后通过一个实际项目展示了如何在Django框架中集成Redis,
消息中间件 缓存 监控
104 0
|
2月前
|
人工智能 Kubernetes Cloud Native
深度对话 解锁阿里云分布式云原生技术落地新姿势
深度对话 解锁阿里云分布式云原生技术落地新姿势
深度对话 解锁阿里云分布式云原生技术落地新姿势
|
29天前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
65 1
|
29天前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(二)
数据的存储--Redis缓存存储(二)
40 2
数据的存储--Redis缓存存储(二)
|
25天前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
57 6
|
30天前
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
139 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
|
2天前
|
缓存 NoSQL Redis
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
46 22