【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

简介: 【分布式技术专题】「缓存解决方案」一文带领你好好认识一下企业级别的缓存技术解决方案的运作原理和开发实战(多级缓存设计分析)

多级缓存设计案例

从用户发出请求到最底层的数据库,实际上会经过多个节点。因此,在整个链路上都可以设置缓存。根据缓存最近原则,将缓存放置在离用户最近的位置可以最大限度地提高系统响应效率,并明显提升系统的吞吐量,从而大大降低对后端的压力。

在整个链路流程中,可以添加缓存的地方包括:发起请求时的浏览器/客户端缓存、边缘缓存/CDN、反向代理(如Nginx)缓存、远程缓存、进程内缓存以及数据库缓存。



上面图中是一种常用的服务端多级缓存设计技术方案:

  • 浏览器/客户端缓存:可以通过设置HTTP缓存头来控制客户端的缓存行为,减少发送重复请求的次数。
  • 边缘缓存/CDN:利用内容分发网络(CDN),将静态资源缓存在全球各个边缘节点上,提供更快速的访问速度。
  • 反向代理缓存:配置反向代理服务器(如Nginx)来缓存静态和动态内容,减少请求的转发到后端服务器的次数。
  • 远程缓存:使用分布式缓存系统(如Redis、Memcached等)作为后端服务的缓存层,提高数据访问速度。
  • 进程内缓存:在应用程序内部使用缓存来存储频繁访问的数据,减少对数据库的访问次数。
  • 数据库缓存:使用数据库自身的缓存机制(如MySQL查询缓存、Redis作为数据库缓存)来加速查询结果的返回。

通过合理地设计和配置多级缓存,可以提升系统性能和吞吐量,实现更高效的请求处理和数据访问。

多级缓存处理流程

多级缓存模式的处理主要流程以及整体的缓存设计如下:



  1. 请求首先到达Nginx,Nginx首先检查本地缓存,如果存在缓存数据则直接返回。为了实现负载均衡和分布式路由策略,我们采用轮询方式来分布访问压力,或者可以考虑在流量达到一定阈值时切换到一致性哈希策略,以提高缓存命中率。需要注意的是,一致性哈希策略可能会导致单点压力过大的问题。
  2. 如果Nginx缓存未命中,则查询分布式缓存。为了实现高可用性和提高系统吞吐量,我们通常采用主从结构的远程分布式缓存。在这一步中,我们将读取从缓存服务集群中的数据,并在命中缓存时返回数据。
  3. 如果分布式缓存未命中,则查询应用本地缓存(堆内或堆外缓存)。同样,我们可以使用轮询或一致性哈希作为路由策略。如果命中了本地缓存,则返回数据,并将数据写回Nginx缓存中。为了避免由于缓存服务故障而导致数据库过载,我们可以尝试读取主缓存服务。
  4. 如果所有缓存均未命中,则查询数据库并返回数据,并异步将数据写回主缓存和应用本地缓存。主缓存通过主从同步机制将数据同步到从缓存服务集群中。在这一步中,需要注意多个应用实例异步写入主缓存时可能会导致数据乱序的问题。

针对以上多级缓存设计,可以通过引入热点发现系统来发现非预期的热点数据,利用flume订阅Nginx日志,然后通过消息进行消费,最后通过storm等实时计算框架进行热点数据的统计,当监控发现到热点数据,将其推送到各个缓存节点上

缓存意义及总结

为了追求高性能,开发者经常使用缓存作为解决系统性能问题的方法。然而,如果缓存使用不当,它可能会适得其反,成为系统的毒药,增加了维护成本和复杂度。缓存并非一刀切的解决方案,但在高并发情况下,通过缓存可以快速响应请求,提升系统吞吐量和支撑更高的并发用户数。在现实生活中,使用缓存来优化系统性能的例子很多。

即使没有机会挑战高并发互联网架构和大量访问流量的情况,我们也应该深入分析通用的技术方案。尤其在缓存使用中,高并发带来的数据一致性问题有许多意想不到的情况,这些分析是开发者建立方法论和培养思路的重要训练途径。学习每种技术组件时,通用解决方案是经过历史经验积累的智慧,需要我们细心品味和应用。

相关文章
|
27天前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
阿里云PolarDB云原生数据库在TPC-C基准测试中以20.55亿tpmC的成绩刷新世界纪录,展现卓越性能与性价比。其轻量版满足国产化需求,兼具高性能与低成本,适用于多种场景,推动数据库技术革新与发展。
|
23天前
|
Cloud Native 关系型数据库 分布式数据库
登顶TPC-C|云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
云原生数据库PolarDB技术揭秘:Limitless集群和分布式扩展篇
|
2月前
|
机器学习/深度学习 存储
DeepSeek进阶开发与应用4:DeepSeek中的分布式训练技术
随着深度学习模型和数据集规模的扩大,单机训练已无法满足需求,分布式训练技术应运而生。DeepSeek框架支持数据并行和模型并行两种模式,通过将计算任务分配到多个节点上并行执行,显著提高训练效率。本文介绍DeepSeek中的分布式训练技术,包括配置与启动方法,帮助用户轻松实现大规模模型训练。数据并行通过`MirroredStrategy`同步梯度,适用于大多数模型;模型并行则通过`ParameterServerStrategy`异步处理大模型。DeepSeek简化了分布式环境配置,支持单机多卡和多机多卡等场景。
|
4月前
|
存储 缓存 负载均衡
从零到一:分布式缓存技术初探
分布式缓存通过将数据存储在多个节点上,利用负载均衡算法提高访问速度、降低数据库负载并增强系统可用性。常见产品有Redis、Memcached等。其优势包括性能扩展、高可用性、负载均衡和容错性,适用于页面缓存、应用对象缓存、状态缓存、并行处理、事件处理及极限事务处理等多种场景。
359 1
|
4月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
175 2
|
5月前
|
存储 缓存 监控
后端开发中的缓存机制:深度解析与最佳实践####
本文深入探讨了后端开发中不可或缺的一环——缓存机制,旨在为读者提供一份详尽的指南,涵盖缓存的基本原理、常见类型(如内存缓存、磁盘缓存、分布式缓存等)、主流技术选型(Redis、Memcached、Ehcache等),以及在实际项目中如何根据业务需求设计并实施高效的缓存策略。不同于常规摘要的概述性质,本摘要直接点明文章将围绕“深度解析”与“最佳实践”两大核心展开,既适合初学者构建基础认知框架,也为有经验的开发者提供优化建议与实战技巧。 ####
|
5月前
|
监控 算法 网络协议
|
5月前
|
供应链 算法 安全
深度解析区块链技术的分布式共识机制
深度解析区块链技术的分布式共识机制
153 0
|
1月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
101 29
|
1月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
125 16
Redis应用—8.相关的缓存框架

热门文章

最新文章