Apache Doris 支持 Arrow Flight SQL 协议,数据传输效率实现百倍飞跃

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 近年来,随着数据科学、数据湖分析等场景的兴起,对数据读取和传输速度提出更高的要求。而 JDBC/ODBC 作为与数据库交互的主流标准,在应对大规模数据读取和传输时显得力不从心,无法满足高性能、低延迟等数据处理需求。为提供更高效的数据传输方案,Apache Doris 在 2.1 版本中基于 Arrow Flight SQL 协议实现了高速数据传输链路,使得数据传输性能实现百倍飞跃。

2023 年 3 月,在阿里云瑶池数据库峰会上,阿里云与飞轮科技正式达成战略合作协议,双方旨在共同研发名为“阿里云数据库 SelectDB 版”的新一代实时数据仓库,为用户提供在阿里云上的全托管服务。
SelectDB 是飞轮科技基于 Apache Doris 内核打造的聚焦于企业大数据实时分析需求的企业级产品。因此阿里云数据库 SelectDB 版也延续了 Apache Doris 性能优异、架构精简、稳定可靠、生态丰富等核心特性,同时还融入了云服务随需而用的特性,通过云原生存算分离的创新架构,为企业带来分钟级弹性伸缩、高性价比、简单易用、安全稳定的一键式云上实时分析体验。
为了更深度的了解阿里云数据库 SelectDB 版,我们可以全面多角度的了解 Apache Doris 的应用实践和经验。

近年来,随着数据科学、数据湖分析等场景的兴起,对数据读取和传输速度提出更高的要求。而 JDBC/ODBC 作为与数据库交互的主流标准,在应对大规模数据读取和传输时显得力不从心,无法满足高性能、低延迟等数据处理需求。为提供更高效的数据传输方案,Apache Doris 在 2.1 版本中基于 Arrow Flight SQL 协议实现了高速数据传输链路使得数据传输性能实现百倍飞跃

基于 Arrow Flight SQL 的高速数据传输链路

Apache Doris 中,查询结果以列存格式的 Block 组织。在之前版本中,如需将这些数据通过 MySQL Client 或 JDBC/ODBC 驱动传输至目标客户端时,需要先将 Block 序列化为行存格式的 Bytes,如果目标客户端是类似 Pandas 的列存数据科学组件或列存数据库,还需将行存格式的 Bytes 再反序列化为列存格式,而序列化/反序列化操作是一个非常耗时的过程。

Apache Doris 2.1 版本 中,我们基于 Arrow Flight SQL 构建了高速数据传输链路,它支持主流语言通过 SQL 从 Doris 高速读取大规模数据,极大提升了其他系统与 Apache Doris 间数据传输效率。若目标客户端同样支持 Arrow 列存格式,整体传输过程将完全避免序列化/反序列化操作,彻底消除因此带来时间及性能损耗。此外,依赖于 Arrow Flight 多节点和多核架构特性,实现了数据传输的完全并行化,极大提高了数据吞吐能力。

以 Python 读取 Apache Doris 中数据为例,Apache Doris 先将列存的 Block 快速转换为列存的 Arrow RecordBatch,随后在 Python 客户端中,将 Arrow RecordBatch 转换为同样列存的 Pandas DataFrame 中,转换速度极快,保障了数据传输的时效性。

基于 Arrow Flight SQL 的高速数据传输链路.png

不仅如此,Arrow Flight SQL 还提供了通用的 JDBC 驱动,支持与同样遵循 Arrow Flight SQL 协议的数据库无缝交互,这不仅增强了 Apache Doris 的兼容性,还为其拓展了更广泛的应用场景。

性能测试

为了直观地展示引入 Arrow Flight SQL 后对数据传输性能的提升效果,我们特地对 Python 使用 Pymysql、Pandas 以及 Arrow Flight SQL 这三种方式读取 Apache Doris 中数据的耗时进行了对比。测试数据集如下:

性能测试-数据集.png

分别使用 Pymysql、Pandas、Arrow Flight SQL 对不同类型数据的传输进行了测试,测试结果如下:

性能测试-传输测试.png

从测试结果来看,Arrow Flight SQL 在所有列类型的传输上都展现出了显著的性能优势。在绝大多数读取场景中,Arrow Flight SQL 的性能提升超 20 倍,而在部分场景中甚至实现了百倍的性能飞跃,为大数据处理和分析提供了强有力的保障。

性能测试.png

使用介绍

Apache Doris 支持 Arrow Flight SQL 后,我们得以利用 Python 的 ADBC Driver 轻松连接 Doris,实现数据的极速读取。接下来,我们将使用 Python(版本要求 >= 3.9)的 ADBC Driver 执行一系列常见的数据库语法操作,包括 DDL、DML、设置 Session 变量以及 Show 语句等。

01 安装 Library

Library 被发布在 PyPI,可通过以下方式简单安装:

pip install adbc_driver_manager
pip install adbc_driver_flightsql
AI 代码解读

在代码中import 以下模块/库来使用已安装的 Library:

import adbc_driver_manager
import adbc_driver_flightsql.dbapi as flight_sql
AI 代码解读

02 连接 Doris

创建与 Doris Arrow Flight SQL 服务交互的客户端。需提供 Doris FE 的 Host、Arrow Flight Port 、登陆用户名以及密码,并进行以下配置。

修改 Doris FE 和 BE 的配置参数:

  • 修改fe/conf/fe.confarrow_flight_sql_port为一个可用端口,如 9090。
  • 修改 be/conf/be.confarrow_flight_port为一个可用端口,如 9091。

假设 Doris 实例中 FE 和 BE 的 Arrow Flight SQL 服务将分别在端口 9090 和 9091 上运行,且 Doris 用户名/密码为“user”/“pass”,那么连接过程如下所示:

conn = flight_sql.connect(uri="grpc://127.0.0.1:9090", db_kwargs={
            adbc_driver_manager.DatabaseOptions.USERNAME.value: "user",
            adbc_driver_manager.DatabaseOptions.PASSWORD.value: "pass",
        })
cursor = conn.cursor()
AI 代码解读

连接完成后,可以通过 SQL 使返回的 Cursor 与 Doris 交互,执行例如建表、获取元数据、导入数据、查询等操作。

03 建表与获取元数据

将 Query 传递给 cursor.execute()函数,执行建表与获取元数据操作:

cursor.execute("DROP DATABASE IF EXISTS arrow_flight_sql FORCE;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("create database arrow_flight_sql;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("show databases;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("use arrow_flight_sql;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("""CREATE TABLE arrow_flight_sql_test
    (
         k0 INT,
         k1 DOUBLE,
         K2 varchar(32) NULL DEFAULT "" COMMENT "",
         k3 DECIMAL(27,9) DEFAULT "0",
         k4 BIGINT NULL DEFAULT '10',
         k5 DATE,
    )
    DISTRIBUTED BY HASH(k5) BUCKETS 5
    PROPERTIES("replication_num" = "1");""")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("show create table arrow_flight_sql_test;")
print(cursor.fetchallarrow().to_pandas())
AI 代码解读

如果 StatusResult返回 0 ,则说明 Query 执行成功(这样设计的原因是为了兼容 JDBC)。

  StatusResult
0            0

  StatusResult
0            0

                   Database
0         __internal_schema
1          arrow_flight_sql
..                      ...
507             udf_auth_db

[508 rows x 1 columns]

  StatusResult
0            0

  StatusResult
0            0
                   Table                                       Create Table
0  arrow_flight_sql_test  CREATE TABLE `arrow_flight_sql_test` (\n  `k0`...
AI 代码解读

04 导入数据

执行 INSERT INTO,向所创建表中导入少量测试数据:

cursor.execute("""INSERT INTO arrow_flight_sql_test VALUES
        ('0', 0.1, "ID", 0.0001, 9999999999, '2023-10-21'),
        ('1', 0.20, "ID_1", 1.00000001, 0, '2023-10-21'),
        ('2', 3.4, "ID_1", 3.1, 123456, '2023-10-22'),
        ('3', 4, "ID", 4, 4, '2023-10-22'),
        ('4', 122345.54321, "ID", 122345.54321, 5, '2023-10-22');""")
print(cursor.fetchallarrow().to_pandas())
AI 代码解读

如下所示则证明导入成功:

  StatusResult
0            0
AI 代码解读

如果需要导入大批量数据到 Doris,可以使用 pydoris 执行 Stream Load 来实现。

05 执行查询

接着对上面导入的表进行查询查询,包括聚合、排序、Set Session Variable 等操作。

cursor.execute("select * from arrow_flight_sql_test order by k0;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("set exec_mem_limit=2000;")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("show variables like \"%exec_mem_limit%\";")
print(cursor.fetchallarrow().to_pandas())

cursor.execute("select k5, sum(k1), count(1), avg(k3) from arrow_flight_sql_test group by k5;")
print(cursor.fetchallarrow().to_pandas())
AI 代码解读

结果如下所示:

   k0            k1    K2                k3          k4          k5
0   0       0.10000    ID       0.000100000  9999999999  2023-10-21
1   1       0.20000  ID_1       1.000000010           0  2023-10-21
2   2       3.40000  ID_1       3.100000000      123456  2023-10-22
3   3       4.00000    ID       4.000000000           4  2023-10-22
4   4  122345.54321    ID  122345.543210000           5  2023-10-22

[5 rows x 6 columns]

  StatusResult
0            0

    Variable_name Value Default_Value Changed
0  exec_mem_limit  2000    2147483648       1

           k5  Nullable(Float64)_1  Int64_2 Nullable(Decimal(38, 9))_3
0  2023-10-22         122352.94321        3            40784.214403333
1  2023-10-21              0.30000        2                0.500050005

[2 rows x 5 columns]
AI 代码解读

06 完整代码

# Doris Arrow Flight SQL Test

# step 1, library is released on PyPI and can be easily installed.
# pip install adbc_driver_manager
# pip install adbc_driver_flightsql
import adbc_driver_manager
import adbc_driver_flightsql.dbapi as flight_sql

# step 2, create a client that interacts with the Doris Arrow Flight SQL service.
# Modify arrow_flight_sql_port in fe/conf/fe.conf to an available port, such as 9090.
# Modify arrow_flight_port in be/conf/be.conf to an available port, such as 9091.
conn = flight_sql.connect(uri="grpc://127.0.0.1:9090", db_kwargs={
            adbc_driver_manager.DatabaseOptions.USERNAME.value: "root",
            adbc_driver_manager.DatabaseOptions.PASSWORD.value: "",
        })
cursor = conn.cursor()

# interacting with Doris via SQL using Cursor
def execute(sql):
    print("\n### execute query: ###\n " + sql)
    cursor.execute(sql)
    print("### result: ###")
    print(cursor.fetchallarrow().to_pandas())

# step3, execute DDL statements, create database/table, show stmt.
execute("DROP DATABASE IF EXISTS arrow_flight_sql FORCE;")
execute("show databases;")
execute("create database arrow_flight_sql;")
execute("show databases;")
execute("use arrow_flight_sql;")
execute("""CREATE TABLE arrow_flight_sql_test
    (
         k0 INT,
         k1 DOUBLE,
         K2 varchar(32) NULL DEFAULT "" COMMENT "",
         k3 DECIMAL(27,9) DEFAULT "0",
         k4 BIGINT NULL DEFAULT '10',
         k5 DATE,
    )
    DISTRIBUTED BY HASH(k5) BUCKETS 5
    PROPERTIES("replication_num" = "1");""")
execute("show create table arrow_flight_sql_test;")


# step4, insert into
execute("""INSERT INTO arrow_flight_sql_test VALUES
        ('0', 0.1, "ID", 0.0001, 9999999999, '2023-10-21'),
        ('1', 0.20, "ID_1", 1.00000001, 0, '2023-10-21'),
        ('2', 3.4, "ID_1", 3.1, 123456, '2023-10-22'),
        ('3', 4, "ID", 4, 4, '2023-10-22'),
        ('4', 122345.54321, "ID", 122345.54321, 5, '2023-10-22');""")


# step5, execute queries, aggregation, sort, set session variable
execute("select * from arrow_flight_sql_test order by k0;")
execute("set exec_mem_limit=2000;")
execute("show variables like \"%exec_mem_limit%\";")
execute("select k5, sum(k1), count(1), avg(k3) from arrow_flight_sql_test group by k5;")

# step6, close cursor 
cursor.close()
AI 代码解读

大规模数据传输场景应用示例

01 Python

在 Python 中,通过 ADBC Driver 连接到已支持 Arrow Flight SQL 的 Doris 后,可以使用多种 ADBC API 从 Doris 加载 Clickbench 数据集到 Python。具体如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import adbc_driver_manager
import adbc_driver_flightsql.dbapi as flight_sql
import pandas
from datetime import datetime

my_uri = "grpc://0.0.0.0:`fe.conf_arrow_flight_port`"
my_db_kwargs = {
    adbc_driver_manager.DatabaseOptions.USERNAME.value: "root",
    adbc_driver_manager.DatabaseOptions.PASSWORD.value: "",
}
sql = "select * from clickbench.hits limit 1000000;"

# PEP 249 (DB-API 2.0) API wrapper for the ADBC Driver Manager.
def dbapi_adbc_execute_fetchallarrow():
    conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs)
    cursor = conn.cursor()
    start_time = datetime.now()
    cursor.execute(sql)
    arrow_data = cursor.fetchallarrow()
    dataframe = arrow_data.to_pandas()
    print("\n##################\n dbapi_adbc_execute_fetchallarrow" + ", cost:" + str(datetime.now() - start_time) + ", bytes:" + str(arrow_data.nbytes) + ", len(arrow_data):" + str(len(arrow_data)))
    print(dataframe.info(memory_usage='deep'))
    print(dataframe)

# ADBC reads data into pandas dataframe, which is faster than fetchallarrow first and then to_pandas.
def dbapi_adbc_execute_fetch_df():
    conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs)
    cursor = conn.cursor()
    start_time = datetime.now()
    cursor.execute(sql)
    dataframe = cursor.fetch_df()    
    print("\n##################\n dbapi_adbc_execute_fetch_df" + ", cost:" + str(datetime.now() - start_time))
    print(dataframe.info(memory_usage='deep'))
    print(dataframe)

# Can read multiple partitions in parallel.
def dbapi_adbc_execute_partitions():
    conn = flight_sql.connect(uri=my_uri, db_kwargs=my_db_kwargs)
    cursor = conn.cursor()
    start_time = datetime.now()
    partitions, schema = cursor.adbc_execute_partitions(sql)
    cursor.adbc_read_partition(partitions[0])
    arrow_data = cursor.fetchallarrow()
    dataframe = arrow_data.to_pandas()
    print("\n##################\n dbapi_adbc_execute_partitions" + ", cost:" + str(datetime.now() - start_time) + ", len(partitions):" + str(len(partitions)))
    print(dataframe.info(memory_usage='deep'))
    print(dataframe)

dbapi_adbc_execute_fetchallarrow()
dbapi_adbc_execute_fetch_df()
dbapi_adbc_execute_partitions()
AI 代码解读

执行结果如下(忽略重复输出),从 Doris 加载 100 万行 105 列 780M 的 Clickbench 数据集,仅用时 3s

##################
 dbapi_adbc_execute_fetchallarrow, cost:0:00:03.548080, bytes:784372793, len(arrow_data):1000000
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Columns: 105 entries, CounterID to CLID
dtypes: int16(48), int32(19), int64(6), object(32)
memory usage: 2.4 GB
None
        CounterID   EventDate               UserID            EventTime              WatchID  JavaEnable                                              Title  GoodEvent  ...  UTMCampaign  UTMContent  UTMTerm  FromTag  HasGCLID          RefererHash              URLHash  CLID
0          245620  2013-07-09  2178958239546411410  2013-07-09 19:30:27  8302242799508478680           1  OWAProfessionov — Мой Круг (СВАО Интернет-магазин          1  ...                                                    0 -7861356476484644683 -2933046165847566158     0
999999       1095  2013-07-03  4224919145474070397  2013-07-03 14:36:17  6301487284302774604           0  @дневники Sinatra (ЛАДА, цена для деталли кто ...          1  ...                                                    0  -296158784638538920  1335027772388499430     0

[1000000 rows x 105 columns]

##################
 dbapi_adbc_execute_fetch_df, cost:0:00:03.611664
##################
 dbapi_adbc_execute_partitions, cost:0:00:03.483436, len(partitions):1
##################
 low_level_api_execute_query, cost:0:00:03.523598, stream.address:139992182177600, rows:-1, bytes:784322926, len(arrow_data):1000000
##################
 low_level_api_execute_partitions, cost:0:00:03.738128streams.size:3, 1, -1
AI 代码解读

02 JDBC

Arrow Flight SQL 协议的开源 JDBC 驱动兼容标准的 JDBC API,可用于大多数 BI 工具通过 JDBC 访问 Doris,并支持高速传输 Apache Arrow 数据。使用方法与通过 MySQL 协议的 JDBC 驱动连接 Doris 类似,只需将链接 URL 中的jdbc:mysql 换成 jdbc:arrow-flight-sql,查询返回的结果依然是 JDBC 的 ResultSet 数据结构。

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

Class.forName("org.apache.arrow.driver.jdbc.ArrowFlightJdbcDriver");
String DB_URL = "jdbc:arrow-flight-sql://0.0.0.0:9090?useServerPrepStmts=false"
        + "&cachePrepStmts=true&useSSL=false&useEncryption=false";
String USER = "root";
String PASS = "";

Connection conn = DriverManager.getConnection(DB_URL, USER, PASS);
Statement stmt = conn.createStatement();
ResultSet resultSet = stmt.executeQuery("show tables;");
while (resultSet.next()) {
    String col1 = resultSet.getString(1);
    System.out.println(col1);
}

resultSet.close();
stmt.close();
conn.close();
AI 代码解读

03 JAVA

与 Python 类似,JAVA 也可以直接创建 ADBC Client 读取 Doris 中数据。在这过程中,首先需获取 FlightInfo,随后连接每一个 Endpoint 拉取数据。

// method one
AdbcStatement stmt = connection.createStatement()
stmt.setSqlQuery("SELECT * FROM " + tableName)
// executeQuery, two steps:
// 1. Execute Query and get returned FlightInfo;
// 2. Create FlightInfoReader to sequentially traverse each Endpoint;
QueryResult queryResult = stmt.executeQuery()


// method two
AdbcStatement stmt = connection.createStatement()
stmt.setSqlQuery("SELECT * FROM " + tableName)
// Execute Query and parse each Endpoint in FlightInfo, and use the Location and Ticket to construct a PartitionDescriptor
partitionResult = stmt.executePartitioned();
partitionResult.getPartitionDescriptors()
//Create ArrowReader for each PartitionDescriptor to read data
ArrowReader reader = connection2.readPartition(partitionResult.getPartitionDescriptors().get(0).getDescriptor()))
AI 代码解读

04 Spark

对于 Spark,除了可以通过 JDBC 和 JAVA 方式连接 Flight SQL Server 外,还可以使用开源的 Spark-Flight-Connector ,该组件支持 Spark 作为 Client 读写 Flight SQL Server。其原因是 Arrow 数据格式与 Doris 中的 Block 数据格式的转换速度非常快,相较于 CSV 与 Block 格式之间的转换,其速度提升了 10 倍之多,并且 Arrow 数据格式对 Map、Array 等复杂类型的支持也更加出色。

结束语

目前,已有多家社区企业用户验证并使用 Arrow Flight SQL 从 Doris 加载数据到 Python、Spark、Flink,测试结果说明,该方式的读取速度相较于以往有了显著的提升。未来,Apache Doris 计划支持 Arrow Flight SQL 写入,届时由主流编程语言构建的系统均可借助 ADBC 客户端来读写 Doris,实现高速的数据交互;并计划利用 Arrow Flight 的并行化能力实现多 BE 并行读取,还可以借助 Arrow Flight SQL 实现 Doris 和 Doris、 Spark 和 Doris 之间的联邦查询。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
301
分享
相关文章
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
随着云基础设施的成熟,Apache Doris 3.0 正式支持了存算分离全新模式。基于这一架构,能够实现更低成本、极致弹性以及负载隔离。本文将介绍存算分离架构及其优势,并通过导入性能、查询性能、资源成本的测试,直观展现存算分离架构下的性能表现,为读者提供具体场景下的使用参考。
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
Apache Doris & SelectDB 技术能力全面解析
本文将对 Doris & SelectDB 适合的分析场景和技术能力进行概述解析
Apache Doris & SelectDB 技术能力全面解析
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
秉承“以场景驱动创新” 的核心理念,持续深耕三大核心场景的关键能力,并对大模型 GenAI 场景的融合应用进行重点投入,为智能时代构建实时、高效、统一的数据底座。
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
Apache Doris 3.0.4 版本正式发布
该版本持续在存算分离、湖仓一体、异步物化视图等方面进行改进提升与问题修复
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
Apache Doris 2.1.9 版本正式发布
Apache Doris 2.1.9 版本正式发布,欢迎使用~
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等