探索Python中的集成方法:Bagging

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 探索Python中的集成方法:Bagging

在机器学习领域,集成方法是一种强大的技术,它通过结合多个基本模型的预测结果来提高整体模型的性能和稳定性。Bagging(Bootstrap Aggregating)是集成方法中的一种重要技术,本文将深入探讨Bagging的原理、实现方式以及在Python中的应用。

什么是Bagging?

Bagging是一种基于自助采样(Bootstrap Sampling)和聚合(Aggregation)的集成方法。其基本思想是通过对训练数据集进行有放回的随机抽样,从而生成多个不同的子集,然后在每个子集上训练一个基本模型。最后,通过对这些基本模型的预测结果进行平均或投票来得到最终的预测结果。

Bagging的步骤

  • 自助采样(Bootstrap Sampling):从原始训练数据集中随机抽取一个样本,并将其放回。重复这个过程,直到得到与原始数据集相同大小的新数据集。由于采用了有放回抽样,因此某些样本可能在新数据集中出现多次,而另一些样本则可能完全不出现。

  • 基本模型训练:在每个自助采样得到的子集上训练一个基本模型。这些基本模型可以是决策树、逻辑回归、支持向量机等任何机器学习模型。

  • 预测结果的聚合:对于回归问题,通常将所有基本模型的预测结果进行平均;对于分类问题,则采用投票的方式,选择获得最多投票的类别作为最终的预测结果。

使用Python实现Bagging

接下来,我们将使用Python中的scikit-learn库来实现一个简单的Bagging模型,并应用于一个示例数据集上。

首先,我们需要导入必要的库:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score

然后,加载示例数据集(这里使用鸢尾花数据集)并将其划分为训练集和测试集:

# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

接下来,我们将使用决策树作为基本模型,并构建一个Bagging分类器:

# 初始化决策树分类器
base_classifier = DecisionTreeClassifier()

# 初始化Bagging分类器
bagging_classifier = BaggingClassifier(base_estimator=base_classifier, n_estimators=10, random_state=42)

# 在训练集上拟合Bagging分类器
bagging_classifier.fit(X_train, y_train)

最后,我们可以使用训练好的Bagging分类器进行预测,并评估其性能:

# 预测测试集
y_pred = bagging_classifier.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Bagging分类器的准确率:", accuracy)

结论

Bagging是一种简单而有效的集成学习方法,通过对基本模型的预测结果进行平均或投票,能够显著提高模型的性能和鲁棒性。在实际应用中,我们可以通过调整基本模型的数量、类型以及采样策略等超参数来进一步优化Bagging模型的性能。

希望这篇博客教程对你有所帮助,如果有任何疑问或建议,欢迎提出。

目录
相关文章
|
1月前
|
测试技术 API Python
【10月更文挑战第1天】python知识点100篇系列(13)-几种方法让你的电脑一直在工作
【10月更文挑战第1天】 本文介绍了如何通过Python自动操作鼠标或键盘使电脑保持活跃状态,避免自动息屏。提供了三种方法:1) 使用PyAutoGUI,通过安装pip工具并执行`pip install pyautogui`安装,利用`moveRel()`方法定时移动鼠标;2) 使用Pymouse,通过`pip install pyuserinput`安装,采用`move()`方法移动鼠标绝对位置;3) 使用PyKeyboard,同样需安装pyuserinput,模拟键盘操作。文中推荐使用PyAutoGUI,因其功能丰富且文档详尽。
WK
|
27天前
|
Python
Python中format_map()方法
在Python中,`format_map()`方法用于使用字典格式化字符串。它接受一个字典作为参数,用字典中的键值对替换字符串中的占位符。此方法适用于从字典动态获取值的场景,尤其在处理大量替换值时更为清晰和方便。
WK
70 36
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
11种经典时间序列预测方法:理论、Python实现与应用
本文将总结11种经典的时间序列预测方法,并提供它们在Python中的实现示例。
67 2
11种经典时间序列预测方法:理论、Python实现与应用
|
1月前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
1月前
|
人工智能 JavaScript 网络安全
ToB项目身份认证AD集成(三完):利用ldap.js实现与windows AD对接实现用户搜索、认证、密码修改等功能 - 以及针对中文转义问题的补丁方法
本文详细介绍了如何使用 `ldapjs` 库在 Node.js 中实现与 Windows AD 的交互,包括用户搜索、身份验证、密码修改和重置等功能。通过创建 `LdapService` 类,提供了与 AD 服务器通信的完整解决方案,同时解决了中文字段在 LDAP 操作中被转义的问题。
|
1月前
|
机器学习/深度学习 算法 前端开发
集成学习任务七和八、投票法与bagging学习
集成学习任务七和八、投票法与bagging学习
18 0
|
1月前
|
Linux Python
Python获得本机本地ip地址的方法
【10月更文挑战第8天】 socket模块包含了丰富的函数和方法,可以获取主机的ip地址,例如gethostbyname方法可以根据主机名获取ip地址,gethostbyname_ex方法可以获得本机所有ip地址列表,也可以使用netifaces模块获取网卡信息。
42 0
|
1月前
|
SQL 安全 数据库
Python防止SQL注入攻击的方法
Python防止SQL注入攻击的方法
65 0
|
1月前
|
SQL 数据库连接 数据库
管理系统中的Visual Studio与SQL集成技巧与方法
在现代软件开发和管理系统中,Visual Studio(VS)作为强大的集成开发环境(IDE),与SQL数据库的紧密集成是构建高效、可靠应用程序的关键
|
1月前
|
Python
Python中tqdm模块的常用方法和示例
`tqdm` 是一个快速、可扩展的Python进度条库,适用于长循环中添加进度提示。通过封装迭代器 `tqdm(iterator)`,可以轻松实现进度显示。支持自定义描述、宽度及嵌套进度条,适用于多种迭代对象。在Jupyter notebook中,可自动调整显示效果。
39 0
下一篇
无影云桌面