【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(二)

简介: 【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用

【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(一)https://developer.aliyun.com/article/1464325


2.2 任务调度与执行

任务调度与执行涵盖了任务队列管理、线程取任务执行和任务状态跟踪等方面。

任务队列管理

线程池需要提供添加任务的接口,将接收到的任务加入任务队列。在添加任务的过程中,需使用互斥量锁住任务队列以实现同步访问。任务添加成功后,通知等待中的线程有新任务可以执行。

void ThreadPool::addTask(const Task& task) {
    {
        lock_guard<mutex> lock(queueMutex);
        taskQueue.emplace(task);
    }
    condition.notify_one();
}

线程取任务执行

线程执行体应按照预设策略从任务队列中获取任务并执行。获取任务时,需要在条件变量上等待,直到有新任务或线程池被终止。任务获取成功后,线程从队列中移除任务并执行。执行完成后,线程可以被再次复用。

void ThreadPool::threadFunction() {
    while (true) {
        Task task;
        {
            unique_lock<mutex> lock(queueMutex);
            condition.wait(lock, [this]() { return !taskQueue.empty() || terminate; });
            if (terminate && taskQueue.empty()) {
                break;
            }
            task = taskQueue.front();
            taskQueue.pop();
        }
        task(); // Execute the task.
    }
}

任务状态跟踪

为了确保任务的执行正确性和完整性,可以使用一定机制来跟踪任务的状态。例如:

  • 任务开始时,记录任务运行的开始时间。
  • 任务执行期间,跟踪任务的进度,如百分比、耗时等。
  • 任务结束时,记录任务的结束状态,如正常完成、出错等。

通过跟踪任务状态,可以调整线程池的执行策略,以适应不同类型的任务需求。同时及时发现并处理任务执行中的异常,提高线程池的稳定性和可靠性。

至此,我们完成了线程池任务调度与执行部分的实现。接下来将介绍如何实现线程池的优雅终止。

2.3 线程池的优雅终止

线程池的优雅终止主要包括以下几个方面:标记线程池终止状态、等待线程执行完成以及资源回收。

标记线程池终止状态

在线程池类中,添加一个原子布尔类型的成员变量terminate,当线程池需要终止时,将其设置为true。在线程取任务的过程中,会检查terminate变量,根据其值决定继续执行或退出。

class ThreadPool {
    // ...
private:
    atomic<bool> terminate; // 标记线程池是否终止
    // ...
};
ThreadPool::ThreadPool(size_t threadCount)
    : terminate(false) {
    // ...
}

等待线程执行完成

在线程池析构函数中,需要等待所有线程执行完成。先将terminate标记设置为true,然后唤醒所有等待中的线程。接着,使用std::thread::join()函数等待线程执行完毕。

ThreadPool::~ThreadPool() {
    terminate = true;
    condition.notify_all(); // 唤醒所有等待中的线程
    for (thread& th : threads) {
        if (th.joinable()) {
            th.join(); // 等待线程执行完毕
        }
    }
}

资源回收

当线程都执行完毕后,线程资源会自动释放。由于C++中容器的析构函数会自动调用元素的析构函数,任务队列中的任务对象也会相应得到处理。此外,std::mutexstd::condition_variable等同步对象在作用域结束后自动释放,无需手动操作。

综上,我们已经实现了线程池的优雅终止。线程池在使用过程中需要注意处理异常情况,防止线程泄露或任务未被处理。通过本章节的实现,线程池应具备基本的功能,并能满足多数场景的需求。接下来的章节将介绍线程池的高级应用及优化方法。

三、线程池高级应用与优化

3.1 动态调整线程数量

在某些场景下,任务的数量和性质可能在运行时发生较大变化。为了应对这种情况,线程池可以在运行时动态调整线程数量,提高资源利用率。

增加线程

在任务累积时,线程池可以根据一定策略,如预设的上限、系统资源占用等,决定是否增加线程。增加线程的操作类似于线程池的初始化过程,将线程执行函数作为参数传递给新建的线程:

void ThreadPool::addThreads(size_t count) {
    for (size_t i = 0; i < count; ++i) {
        threads.emplace_back(&ThreadPool::threadFunction, this);
    }
}

减少线程

在任务数量减少时,线程池可以选择减少线程数量。这需要为线程添加一个退出机制,例如设置一个特殊的任务类型,当线程获取到该类型任务时主动退出。另外,可以通过将terminate标记设为true达到相同效果,但需要注意此操作将导致线程池中所有线程退出。

线程数量调整策略

关于线程数量的调整策略,可以基于以下几点进行设计:

  1. 设置线程数量上下限,避免线程过多或过少的情况。
  2. 监控任务队列的状态,当任务数量大于一定阈值时增加线程,当任务数量小于一定阈值时减少线程。
  3. 根据系统资源状况进行调整,例如CPU利用率、内存占用等。

通过以上方法对线程数量进行动态调整,线程池可以实现更高的效率和灵活性,并节省计算资源。然而,需要注意线程数量调整过程中可能带来的同步问题和性能开销。

3.2 自定义任务调度策略

线程池默认的任务调度策略可能不适用于所有场景。例如,某些任务需要优先执行,而其他任务可以在空闲时间处理。自定义任务调度策略可以提高线程池的执行效率,并使其更具可配置性。

任务优先级

为了实现优先级调度,首先需要为任务定义优先级属性。可以在任务类型中添加一个表示优先级的整数或枚举类型成员变量。例如:

class Task {
public:
    // ...
    int getPriority() const {
        return priority;
    }
private:
    int priority; // 代表任务优先级的整数值
    // ...
};

优先级任务队列

为了根据任务优先级对任务队列进行排序,可以将任务队列的数据结构改为优先级队列。优先级队列内部使用堆数据结构存储元素,可以在常数时间内获取最大或最小值,并在对数时间内插入和删除元素。修改线程池类中的任务队列定义如下:

#include <queue> // 引入优先级队列
class ThreadPool {
    // ...
private:
    priority_queue<Task, vector<Task>, LessByPriority> taskQueue; // 优先级任务队列
    // ...
};

其中,LessByPriority是一个自定义的比较器,用于根据任务优先级进行排序。例如:

struct LessByPriority {
    bool operator()(const Task& lhs, const Task& rhs) const {
        return lhs.getPriority() > rhs.getPriority();
    }
};

线程调度策略

现在,任务队列已经根据优先级有序。线程在取任务时,会自动选择优先级最高的任务执行。除了优先级调度,还可以为任务实现其他调度策略,例如轮询、FIFO、LIFO等。只需修改任务队列的数据结构和排序方式即可。

通过自定义任务调度策略,线程池可以根据实际需求灵活调整任务执行顺序和方式,提高执行效率和满足特殊场景下的需求。


【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(三)https://developer.aliyun.com/article/1464327

目录
相关文章
|
4月前
|
Ubuntu API C++
C++标准库、Windows API及Ubuntu API的综合应用
总之,C++标准库、Windows API和Ubuntu API的综合应用是一项挑战性较大的任务,需要开发者具备跨平台编程的深入知识和丰富经验。通过合理的架构设计和有效的工具选择,可以在不同的操作系统平台上高效地开发和部署应用程序。
196 11
|
11月前
|
存储 负载均衡 算法
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
306 15
|
12月前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
455 12
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
404 5
|
缓存 安全 C++
C++无锁队列:解锁多线程编程新境界
【10月更文挑战第27天】
1020 7
|
消息中间件 存储 安全
|
存储 并行计算 安全
C++多线程应用
【10月更文挑战第29天】C++ 中的多线程应用广泛,常见场景包括并行计算、网络编程中的并发服务器和图形用户界面(GUI)应用。通过多线程可以显著提升计算速度和响应能力。示例代码展示了如何使用 `pthread` 库创建和管理线程。注意事项包括数据同步与互斥、线程间通信和线程安全的类设计,以确保程序的正确性和稳定性。
320 5
|
12月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
10月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
399 12
|
8月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
212 0

热门文章

最新文章