ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力

简介: 【2月更文挑战第28天】ICLR 2024 Spotlight:自蒸馏激发CLIP模型的检测分割能力

6.jpg
在ICLR 2024的Spotlight环节中,研究者们展示了一种创新的方法——CLIPSelf,这是一种自蒸馏技术,用于提升大型语言模型(LLMs)在开放词汇密集预测任务中的性能。这些任务包括目标检测和图像分割,它们在计算机视觉领域中具有重要意义。CLIPSelf的核心在于利用CLIP模型,尤其是那些结合了视觉变换器(ViTs)的模型,在零样本图像分类中展现出的卓越泛化能力。这些模型能够识别在训练数据中未见过的图像,但在将这种能力从全局图像表示转移到局部区域表示时,却面临着领域转移的挑战。

为了克服这一挑战,研究者们对CLIP模型中的区域-语言对齐进行了深入分析,并提出了CLIPSelf方法。这种方法无需依赖区域-文本对,就能将CLIP ViT的图像级识别能力适配到局部图像区域。CLIPSelf通过将从密集特征图中提取的区域表示与其对应图像裁剪的图像级表示对齐,实现了ViTs的自我蒸馏。这一过程不仅提高了模型在开放词汇目标检测和图像分割任务上的性能,而且在各种基准测试中取得了新的最佳性能。

CLIPSelf的有效性得到了实验验证。在开放词汇目标检测方面,研究者们构建了一个基于冻结CLIP ViT的两阶段检测器基线,并在OV-COCO和OV-LVIS基准测试上取得了最佳性能。在开放词汇语义和全景分割方面,CLIPSelf也显著提升了当前最佳方法的性能,如Cat-Seg和ODISE。

研究者们还比较了CLIPSelf与使用区域文本对的方法。结果显示,CLIPSelf在区域文本对的方法中表现出更大的优势。此外,研究者们还探索了CLIPSelf在不同模型架构上的适用性,包括在具有局部窗口注意力的ViTs上的应用,并在CC3M数据集上进行了自蒸馏。这些实验结果表明,CLIPSelf可以作为一种简单而有效的方法,增强CLIP ViTs的密集表示,这对于开放词汇密集预测任务至关重要。

CLIPSelf的研究不仅为如何将CLIP模型的视觉-语言对齐能力从全局图像转移到局部区域提供了新的视角,而且为开放词汇密集预测任务提供了一种有效的解决方案。

目录
相关文章
|
1月前
|
计算机视觉
ECCV2024 Oral:第一视角下的动作图像生成,Meta等提出LEGO模型
【10月更文挑战第25天】Meta公司提出了一种名为LEGO的新模型,旨在从第一视角生成动作图像,以促进技能传递。LEGO结合了视觉大型语言模型和扩散模型,通过微调和生成技术,实现了更准确的动作图像生成。该研究已在ECCV2024上被选为口头报告。
29 2
|
2月前
|
机器学习/深度学习 人工智能 算法
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
[大语言模型-论文精读] Diffusion Model技术-通过时间和空间组合扩散模型生成复杂的3D人物动作
30 0
|
3月前
|
人工智能 开发工具 计算机视觉
AI计算机视觉笔记三十:yolov8_obb旋转框训练
本文介绍了如何使用AUTODL环境搭建YOLOv8-obb的训练流程。首先创建虚拟环境并激活,然后通过指定清华源安装ultralytics库。接着下载YOLOv8源码,并使用指定命令开始训练,过程中可能会下载yolov8n.pt文件。训练完成后,可使用相应命令进行预测测试。
|
4月前
|
数据可视化 数据挖掘 网络安全
语音情感基座模型emotion6vec 问题之什么是表征可视化,在这项研究中如何应用
语音情感基座模型emotion6vec 问题之什么是表征可视化,在这项研究中如何应用
|
6月前
|
人工智能 vr&ar 计算机视觉
CVPR 2024:让图像扩散模型生成高质量360度场景,只需要一个语言模型
【6月更文挑战第20天】CVPR 2024研究表明,结合语言模型的图像扩散模型能高效生成360度全景图像,减少对标注数据的依赖。该框架利用语言模型的语义信息引导细节丰富的图像生成,解决了传统方法的标注难题。然而,方法的准确性和计算资源需求是挑战。这一进展推动了VR/AR图像生成技术的发展。[论文链接](https://arxiv.org/pdf/2406.01843)**
80 6
|
机器学习/深度学习 测试技术 计算机视觉
【计算机视觉 | ViT-G】谷歌大脑提出 ViT-G:缩放视觉 Transformer,高达 90.45% 准确率
谷歌大脑提出 ViT-G:缩放视觉 Transformer,高达 90.45% 准确率
|
7月前
|
机器学习/深度学习 计算机视觉
【论文速递】ICLR2023 - 基于视觉语言预训练模型的医疗图像小样本学习及零样本推理性能研究
【论文速递】ICLR2023 - 基于视觉语言预训练模型的医疗图像小样本学习及零样本推理性能研究
114 0
|
机器学习/深度学习 算法 数据挖掘
NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别
NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别
NeurIPS 2022 Spotlight|生成式语义分割新范式GMMSeg,可同时处理闭集和开集识别
|
机器学习/深度学习 编解码 计算机视觉
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(二)
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(二)
205 0
|
机器学习/深度学习 编解码 机器人
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(一)
NeurIPS 2022 | 百度提出超快Transformer分割模型RTFormer,180FPS+81mIOU(一)
198 0
下一篇
DataWorks