ICLR 2024:零成本增加模型容量:一种简单的低参数量微调策略

简介: 【2月更文挑战第23天】ICLR 2024:零成本增加模型容量:一种简单的低参数量微调策略

1.jpeg
在ICLR 2024会议上,一项研究提出了一种名为CAPABOOST的策略,这是一种旨在提高模型容量的同时保持参数高效的微调方法。这项研究的核心在于通过低秩更新和并行权重模块来增强模型的容量,而无需增加额外的参数。CAPABOOST策略的提出,为大型预训练模型的微调提供了一种新的、高效的解决方案。

在深度学习领域,尤其是在自然语言处理和计算机视觉任务中,大型预训练模型如GPT-3等已经成为了一种强大的工具。然而,这些模型的微调通常需要大量的计算资源,这在一定程度上限制了它们的应用。为了解决这一问题,研究者们提出了CAPABOOST,这是一种通过在目标层的共享权重矩阵上应用静态随机掩码来构建多样化权重矩阵的方法。这种方法不仅提高了模型的容量,而且由于不增加参数,因此也保持了参数的高效性。

CAPABOOST策略的提出,是对现有参数高效微调方法的一种补充和改进。它能够与LoRA和Adapters等方法无缝集成,这使得研究者们可以在不改变现有微调流程的情况下,直接应用CAPABOOST来提升模型性能。在自然语言理解、问答和图像分类等下游任务的实验中,CAPABOOST展现出了显著的性能提升,这证明了其有效性。

审稿过程中,CAPABOOST策略得到了审稿人的高度评价。审稿人认为,这是一种简单而有效的思路,能够在不增加计算成本的情况下,带来实证上的显著改进。尽管如此,审稿人也指出,在实际推理过程中,由于GPU上稀疏操作的速度问题,可能会存在一些额外的开销。对此,研究者们提供了额外的实验结果,并讨论了CAPABOOST在不同稀疏度下的表现,以及如何利用N:M稀疏随机修剪掩码来实现硬件加速。

在讨论CAPABOOST的工作原理时,研究者们详细解释了如何在微调阶段通过低秩近似来模拟冻结模型的性能,并讨论了CAPABOOST与现有低秩近似方法的比较。他们强调,CAPABOOST能够在不增加额外存储成本的情况下,实现参数数量的减少,这对于资源有限的环境尤为重要。

在回应审稿人的质疑时,研究者们强调了CAPABOOST在推理阶段的“零成本”特性,即在推理时不需要额外的存储或计算成本。在微调阶段,CAPABOOST的实现也是几乎“零成本”的,因为其参数数量少于没有CAPABOOST的相应PEFT方法,并且可以通过相同的随机种子再生掩码来避免掩码存储,从而进一步降低了存储成本。

CAPABOOST策略为参数高效的微调提供了一种新的视角。它通过在不增加参数数量的情况下增加模型容量,实现了性能的提升。这种方法的简单性和有效性使其在多个下游任务中具有广泛的应用潜力。研究者们对审稿人的反馈进行了详细的回应,并承诺公开代码和基准测试,这将进一步推动该领域的研究进展。

目录
相关文章
|
7月前
|
PyTorch 算法框架/工具 计算机视觉
用thop去获得模型参数量和计算量(pytorch)
用thop去获得模型参数量和计算量(pytorch)
521 2
|
7月前
|
机器学习/深度学习 监控 Python
tensorflow2.x多层感知机模型参数量和计算量的统计
tensorflow2.x多层感知机模型参数量和计算量的统计
199 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
397 2
|
13天前
|
人工智能 物联网 C语言
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
SVDQuant是由MIT研究团队推出的扩散模型后训练量化技术,通过将模型的权重和激活值量化至4位,显著减少了内存占用并加速了推理过程。该技术引入了高精度的低秩分支来吸收量化过程中的异常值,支持多种架构,并能无缝集成低秩适配器(LoRAs),为资源受限设备上的大型扩散模型部署提供了有效的解决方案。
38 5
SVDQuant:MIT 推出的扩散模型后训练的量化技术,能够将模型的权重和激活值量化至4位,减少内存占用并加速推理过程
|
7月前
|
机器学习/深度学习
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
YOLOv5改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约42W)
347 4
|
7月前
|
机器学习/深度学习
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
YOLOv8改进 | Conv篇 | 利用轻量化PartialConv提出一种全新的结构CSPPC (参数量下降约100W)
1197 0
|
编解码 vr&ar 计算机视觉
39亿参数模型公开可用,采样速度7倍提升,残差量化生成图片入选CVPR'22
39亿参数模型公开可用,采样速度7倍提升,残差量化生成图片入选CVPR'22
193 0
39亿参数模型公开可用,采样速度7倍提升,残差量化生成图片入选CVPR'22
|
机器学习/深度学习 数据可视化 计算机视觉
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA(1)
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA
137 0
|
机器学习/深度学习 数据可视化 数据挖掘
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA(2)
0参数量 + 0训练,3D点云分析方法Point-NN刷新多项SOTA
296 0
|
存储 机器学习/深度学习 自然语言处理
650亿参数,8块GPU就能全参数微调:邱锡鹏团队把大模型门槛打下来了
650亿参数,8块GPU就能全参数微调:邱锡鹏团队把大模型门槛打下来了
481 0