ElasticSearch架构介绍及原理解析

本文涉及的产品
Elasticsearch Serverless检索通用型,资源抵扣包 100CU*H
简介: ElasticSearch架构介绍及原理解析

image.png

前言

在当今大数据时代,数据的快速增长使得有效地管理、检索和分析数据成为企业发展的关键。Elasticsearch(以下简称ES)作为一种开源的分布式搜索和分析引擎,在这个领域中扮演着重要的角色。它不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。

Elasticsearch是基于Apache Lucene的搜索引擎,但它不仅仅局限于搜索功能,还提供了复杂的分布式搜索、实时分析以及大规模数据处理等功能。Lucene当下最先进、高性能、全功能的搜索引擎库。但是Lucene仅仅只是一个库,为了充分发挥其功能,需要使用Java并将Lucene直接集成到应用程序中。鉴于Lucene如此强大却难以上手的特点,诞生了ES。

总体来说,ES具有如下特点:

  • 一个分布式的实时文档存储引擎,每个字段都可以被索引与搜索
  • 一个分布式实时分析搜索引擎,支持各种查询和聚合操作
  • 能胜任上百个服务节点的扩展,并可以支持PB级别的结构化或者非结构化数据

架构解析

image.png

  1. 节点(Node)

Elasticsearch集群中,每个运行的Elasticsearch实例称为一个节点。节点可以是数据节点(Data Node)、主节点(Master Node)或客户端节点(Client Node)等类型。节点之间通过集群通信相互连接,形成一个完整的集群。

  1. 索引(Index)

索引是Elasticsearch中最重要的概念之一,它类似于传统数据库中的数据库。索引用于存储和组织文档,每个文档都属于一个索引,并且具有唯一的类型和ID。

  1. 分片与副本

为了实现数据的水平扩展和高可用性,Elasticsearch将索引划分为多个分片(Shard),每个分片可以分布在集群中的不同节点上。此外,每个分片还可以有零个或多个副本(Replica),用于提供数据的冗余备份和故障恢复。

  1. 查询与分析

Elasticsearch提供了丰富而灵活的查询语言,可以满足各种检索需求。其底层基于倒排索引和分布式搜索技术,能够快速有效地执行各种查询操作,并支持复杂的聚合、过滤和分析功能。

原理解析

  1. 倒排索引(Inverted Index)

Elasticsearch使用基于倒排索引的数据结构来实现快速的全文搜索。倒排索引将文档中的每个词映射到包含该词的文档列表,通过这种方式可以快速定位到包含特定词的文档,从而实现高效的搜索。

  1. Lucene引擎

Elasticsearch底层基于Apache Lucene引擎,Lucene提供了高性能的文本搜索和索引功能。Elasticsearch通过封装Lucene,并在其基础上构建分布式系统,实现了更高级别的功能和可扩展性。

  1. 分布式协调与通信

Elasticsearch通过Zen Discovery等机制实现了节点的自动发现和集群管理,同时通过分片复制和故障转移等技术确保了数据的高可用性和容错性。

  1. 实时搜索与分析

Elasticsearch支持实时索引和搜索,能够在毫秒级别内处理大规模数据,并提供了丰富的聚合和分析功能,如统计、分组、排序等,满足了各种复杂的数据分析需求。

总结

通过本文的介绍,我们对Elasticsearch的架构与原理有了更深入的了解。Elasticsearch作为一种强大的分布式搜索和分析引擎,不仅具有高性能和可扩展性,而且还提供了丰富的功能和灵活的查询语言,为企业在数据管理和分析方面提供了强大的支持。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
机器学习/深度学习 文字识别 监控
安全监控系统:技术架构与应用解析
该系统采用模块化设计,集成了行为识别、视频监控、人脸识别、危险区域检测、异常事件检测、日志追溯及消息推送等功能,并可选配OCR识别模块。基于深度学习与开源技术栈(如TensorFlow、OpenCV),系统具备高精度、低延迟特点,支持实时分析儿童行为、监测危险区域、识别异常事件,并将结果推送给教师或家长。同时兼容主流硬件,支持本地化推理与分布式处理,确保可靠性与扩展性,为幼儿园安全管理提供全面解决方案。
67 3
|
1月前
|
弹性计算 负载均衡 网络协议
阿里云SLB深度解析:从流量分发到架构优化的技术实践
本文深入探讨了阿里云负载均衡服务(SLB)的核心技术与应用场景,从流量分配到架构创新全面解析其价值。SLB不仅是简单的流量分发工具,更是支撑高并发、保障系统稳定性的智能中枢。文章涵盖四层与七层负载均衡原理、弹性伸缩引擎、智能DNS解析等核心技术,并结合电商大促、微服务灰度发布等实战场景提供实施指南。同时,针对性能调优与安全防护,分享连接复用优化、DDoS防御及零信任架构集成的实践经验,助力企业构建面向未来的弹性架构。
181 76
|
2月前
|
存储 JSON 数据格式
ElasticSearch基础概念解析
以上就是ElasticSearch的基础概念。理解了这些概念,你就可以更好地使用ElasticSearch,像使用超级放大镜一样,在数据海洋中找到你需要的珍珠。
129 71
|
1月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
253 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
1月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
74 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
|
29天前
|
监控 安全 数据安全/隐私保护
销售易CRM:技术架构与安全性能的深度解析
销售易CRM基于云计算与微服务架构,融合高可用性、弹性扩展及模块化开发优势,为企业提供灵活定制化的客户关系管理解决方案。系统采用多层次安全防护机制,包括数据加密、细粒度权限控制和实时监控审计,确保数据安全与隐私保护。某金融机构的成功案例表明,销售易CRM显著提升了数据安全性和系统性能,同时满足行业合规要求。作为数字化转型的利器,销售易CRM助力企业实现可持续发展与市场竞争力提升。
|
2月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
262 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
2月前
|
存储 机器学习/深度学习 应用服务中间件
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
372 18
|
2月前
|
算法 前端开发 定位技术
地铁站内导航系统解决方案:技术架构与核心功能设计解析
本文旨在分享一套地铁站内导航系统技术方案,通过蓝牙Beacon技术与AI算法的结合,解决传统导航定位不准确、路径规划不合理等问题,提升乘客出行体验,同时为地铁运营商提供数据支持与增值服务。 如需获取校地铁站内智能导航系统方案文档可前往文章最下方获取,如有项目合作及技术交流欢迎私信我们哦~
125 1
|
1月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
73 1

热门文章

最新文章

推荐镜像

更多