ElasticSearch架构介绍及原理解析

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: ElasticSearch架构介绍及原理解析

image.png

前言

在当今大数据时代,数据的快速增长使得有效地管理、检索和分析数据成为企业发展的关键。Elasticsearch(以下简称ES)作为一种开源的分布式搜索和分析引擎,在这个领域中扮演着重要的角色。它不仅仅只是全文搜索,还支持结构化搜索、数据分析、复杂的语言处理、地理位置和对象间关联关系等。

Elasticsearch是基于Apache Lucene的搜索引擎,但它不仅仅局限于搜索功能,还提供了复杂的分布式搜索、实时分析以及大规模数据处理等功能。Lucene当下最先进、高性能、全功能的搜索引擎库。但是Lucene仅仅只是一个库,为了充分发挥其功能,需要使用Java并将Lucene直接集成到应用程序中。鉴于Lucene如此强大却难以上手的特点,诞生了ES。

总体来说,ES具有如下特点:

  • 一个分布式的实时文档存储引擎,每个字段都可以被索引与搜索
  • 一个分布式实时分析搜索引擎,支持各种查询和聚合操作
  • 能胜任上百个服务节点的扩展,并可以支持PB级别的结构化或者非结构化数据

架构解析

image.png

  1. 节点(Node)

Elasticsearch集群中,每个运行的Elasticsearch实例称为一个节点。节点可以是数据节点(Data Node)、主节点(Master Node)或客户端节点(Client Node)等类型。节点之间通过集群通信相互连接,形成一个完整的集群。

  1. 索引(Index)

索引是Elasticsearch中最重要的概念之一,它类似于传统数据库中的数据库。索引用于存储和组织文档,每个文档都属于一个索引,并且具有唯一的类型和ID。

  1. 分片与副本

为了实现数据的水平扩展和高可用性,Elasticsearch将索引划分为多个分片(Shard),每个分片可以分布在集群中的不同节点上。此外,每个分片还可以有零个或多个副本(Replica),用于提供数据的冗余备份和故障恢复。

  1. 查询与分析

Elasticsearch提供了丰富而灵活的查询语言,可以满足各种检索需求。其底层基于倒排索引和分布式搜索技术,能够快速有效地执行各种查询操作,并支持复杂的聚合、过滤和分析功能。

原理解析

  1. 倒排索引(Inverted Index)

Elasticsearch使用基于倒排索引的数据结构来实现快速的全文搜索。倒排索引将文档中的每个词映射到包含该词的文档列表,通过这种方式可以快速定位到包含特定词的文档,从而实现高效的搜索。

  1. Lucene引擎

Elasticsearch底层基于Apache Lucene引擎,Lucene提供了高性能的文本搜索和索引功能。Elasticsearch通过封装Lucene,并在其基础上构建分布式系统,实现了更高级别的功能和可扩展性。

  1. 分布式协调与通信

Elasticsearch通过Zen Discovery等机制实现了节点的自动发现和集群管理,同时通过分片复制和故障转移等技术确保了数据的高可用性和容错性。

  1. 实时搜索与分析

Elasticsearch支持实时索引和搜索,能够在毫秒级别内处理大规模数据,并提供了丰富的聚合和分析功能,如统计、分组、排序等,满足了各种复杂的数据分析需求。

总结

通过本文的介绍,我们对Elasticsearch的架构与原理有了更深入的了解。Elasticsearch作为一种强大的分布式搜索和分析引擎,不仅具有高性能和可扩展性,而且还提供了丰富的功能和灵活的查询语言,为企业在数据管理和分析方面提供了强大的支持。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
8天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
42 6
|
8天前
|
设计模式 Java API
微服务架构演变与架构设计深度解析
【11月更文挑战第14天】在当今的IT行业中,微服务架构已经成为构建大型、复杂系统的重要范式。本文将从微服务架构的背景、业务场景、功能点、底层原理、实战、设计模式等多个方面进行深度解析,并结合京东电商的案例,探讨微服务架构在实际应用中的实施与效果。
25 1
|
3天前
|
SQL Java 数据库连接
Mybatis架构原理和机制,图文详解版,超详细!
MyBatis 是 Java 生态中非常著名的一款 ORM 框架,在一线互联网大厂中应用广泛,Mybatis已经成为了一个必会框架。本文详细解析了MyBatis的架构原理与机制,帮助读者全面提升对MyBatis的理解和应用能力。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Mybatis架构原理和机制,图文详解版,超详细!
|
9天前
|
Kubernetes Cloud Native 云计算
云原生技术深度解析:重塑企业IT架构的未来####
本文深入探讨了云原生技术的核心理念、关键技术组件及其对企业IT架构转型的深远影响。通过剖析Kubernetes、微服务、容器化等核心技术,本文揭示了云原生如何提升应用的灵活性、可扩展性和可维护性,助力企业在数字化转型中保持领先地位。 ####
|
8天前
|
存储 索引
Elasticsearch分布式架构
【11月更文挑战第2天】
16 1
|
10天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
3天前
|
存储 供应链 物联网
深入解析区块链技术的核心原理与应用前景
深入解析区块链技术的核心原理与应用前景
|
3天前
|
存储 供应链 安全
深度解析区块链技术的核心原理与应用前景
深度解析区块链技术的核心原理与应用前景
11 0
|
8天前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
20 5
|
1月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
112 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。

推荐镜像

更多