数据结构——堆的应用 堆排序详解

简介: 数据结构——堆的应用 堆排序详解

在土土的上篇博客二叉树堆的介绍与实现中,我们发现测试代码是升序;今天我们就来分析堆的重要应用——**堆排序**🎉🎉。

升序实现如下:

#include"Heap.h"
int main()
{
  Heap hp;
  HeapInit(&hp);
  int a[] = { 65,100,70,32,50,60 };
  for (int i = 0; i < 6; i++)
  {
    HeapPush(&hp, a[i]);
  }
  while (!HeapEmpty(&hp))
  {
    int top = HeapTop(&hp);
    printf("%d\n", top);
    HeapPop(&hp);
  }
    HeapDestroy(&hp);
  return 0;
}

详情可在土土的博客数据结构——lesson7二叉树堆的介绍与实现中查看🥳🥳

一、堆排序(基础版)

既然是堆排序,那我们首先肯定得有一个堆,这里土土就可以偷个懒将上篇博客中实现的堆代码copy一下🥰🥰

堆的实现

#include"Heap.h"
//堆的初始化
void HeapInit(Heap* hp)
{
  assert(hp);
  hp->a = NULL;
  hp->capacity = 0;
  hp->size = 0;
}
// 堆的销毁
void HeapDestroy(Heap* hp)
{
  assert(hp);
  free(hp->a);
  hp->a = NULL;
  hp->capacity = 0;
  hp->size = 0;
}
//交换函数
void Swap(HPDataType* a,HPDataType* b)
{
  HPDataType tmp = *a;
  *a = *b;
  *b = tmp;
}
//堆向下调整算法
void AdjustDown(HPDataType* a, int n,int parent)
{
  //找到较小的孩子节点
  int child = parent * 2 + 1;
  
  //向下调整
  while (child < n)
  {
    if (child + 1 < n && a[child] > a[child + 1])
    {
      child++;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = child * 2 + 1;
    }
    else
      break;
    
  }
}
//向上调整
void AdjustUp(HPDataType* a,int child)
{
  //找到双亲节点
  int parent = (child - 1) / 2;
  //向上调整
  while (child > 0)
  {
    if (a[parent] > a[child])
    {
      Swap(&a[parent], &a[child]);
      child = parent;
      parent = (child - 1) / 2;
    }
    else
      break;
    
  }
}
// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
  assert(hp);
  //判断容量
  if (hp->size == hp->capacity)//容量满了扩容
  {
    int newcapacity = hp->capacity == 0 ? 0 : 2 * hp->capacity;
    HPDataType* new = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
    if (new == NULL)
    {
      perror("realloc fail");
      return;
    }
    hp->a = new;
    hp->capacity = newcapacity;
  }
  //尾插
  hp->a[hp->size] = x;
  hp->size++;
  //向上调整算法
  AdjustUp(hp->a,hp->size-1);
}
// 堆的删除,删除堆顶元素
void HeapPop(Heap* hp)
{
  assert(hp);
  assert(!HeapEmpty(hp));
  Swap(&hp->a[0], &hp->a[hp->size - 1]);
  hp->size--;
  //向下调整算法
  AdjustDown(hp->a, hp->size, 0);
}
// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
  assert(hp);
  assert(!HeapEmpty(hp));
  return hp->a[0];
}
// 堆的数据个数
int HeapSize(Heap* hp)
{
  assert(hp);
  return hp->size;
}
// 堆的判空
int HeapEmpty(Heap* hp)
{
  assert(hp);
  return hp->size == 0;
}

当然在使用这些函数时要记得先声明一下,这里我们都放到一个头文件Heap.h中

Heap.h

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int HPDataType;
//构建一个结构体封装堆
typedef struct Heap
{
  HPDataType* a;//数组顺序表
  int size;//堆元素个数
  int capacity;//数组空间
}Heap;
//以下是实现堆的函数
// 堆的初始化
void HeapInit(Heap* hp);
// 堆的销毁
void HeapDestroy(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

使用时只需包含该头文件即可

#include"Heap.h"

堆排序

给定一个数组a[ ] = {7,8,3,5,1,9,5,4},我们需要利用上面的堆来将它进行排序

🤩🤩思路

①我们首先需要将数组中的元素插入堆中(利用HeapPush函数),

💫前面我们已经学习过堆插入函数,它里面利用堆向上调整算法会自动将插入的数据调整为一个堆(我们实现的是小堆);

②然后我们需要获取堆顶元素(也就是小堆中最小的元素),利用HeapTop函数即可;

③获取最小元素后我们就需要获取次小元素,先利用堆的删除函数(HeapPop函数),将堆顶元素(也就是小堆中最小的元素)删除;

💞删除函数中堆向下调整算法又会将剩余元素调整为小堆,此时堆顶元素就是删除一个元素后最小的元素;

④将删除后的元素重新拷贝回数组a中;

⑤循环②③两步直到全部排序成功。

代码实现如下:

#include"Heap.h"
void HeapSort(int* a,int size)
{
  Heap hp;
  HeapInit(&hp);
  //将a中元素插入堆中
  for (int i = 0; i < size; i++)
  {
    HeapPush(&hp, a[i]);
  }
  //获取堆顶(最小)元素并删除
  int i = 0;
  while (i < size)
  {
    a[i++] = HeapTop(&hp);
    HeapPop(&hp);
  }
  HeapDestroy(&hp);
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  int size = sizeof(a) / sizeof(int);
  HeapSort(a,size);
  return 0;
}

🥳🥳结果如下:

排序前

排序后

💥💥上述堆排序的实现尽管能够实现排序,但是…我们发现如果没有提前实现堆或者准备好堆的代码,我们是没办法实现的,而且我们需要来回拷贝数据,空间复杂度较大。

🥰🥰这里就需要介绍下面简便版堆排序啦~

二、堆排序(简便版)

在土土的数据结构学习笔记数据结构——lesson7二叉树堆的介绍与实现中,详细介绍了堆向上调整算法与堆向下调整算法,接下来我们就可以利用这两个函数来实现堆以及堆的排序🥳🥳

(1)利用堆向上或向下调整算法实现堆

堆向上调整算法实现

//向上调整算法
void AdjustUp(HPDataType* a,int child)
{
  //找到双亲节点
  int parent = (child - 1) / 2;
  //向上调整
  while (child > 0)
  {
    if (a[parent] > a[child])
    {
      Swap(&a[parent], &a[child]);
      child = parent;
      parent = (child - 1) / 2;
    }
    else
      break;
    
  }
}

数组a[ ] = {7,8,3,5,1,9,5,4},我们可以看成一个二叉树:

只需要从第二个数8开始每次读取一个数据都向上调整为堆,那么读完整个数组就可以得到一个堆啦~🥰🥰

//从第二个数据开始向上调整建堆
for (int i = 1; i < size; i++)
{
  AdjustUp(a, i);
}

🤩🤩之前基础版排序是又开辟了一个空间来存放a中的数据,排成堆后又每次选取最小的元素拷贝回a中,不仅麻烦而且会增加空间的使用;

所以简便版排序便直接将a看成一个二叉树利用向上调整算法直接成堆,不需要开辟额外的空间。

堆向下调整算法实现

🥰🥰类似于向上调整算法的实现,所不同的是开始调整的位置不再从第二个数开始,而是从最后一个非叶子节点开始向下调整:

调整完了再依次往前找到前一个非叶子节点(下标是元素个数size-2再除2)重复向下调整即可;

🥳🥳使用向下调整的时间复杂度较向上调整小,所以我们这里选择用向下调整

代码如下:

//堆向下调整算法
for (int i = (size-2 )/ 2 ; i >= 0; i--)
{
  AdjustDown(a, size, i);
}

结果如下:

可以发现已经将其调整为一个小堆了🥳🥳

(2)利用堆向下调整算法排序

那我们应该怎么将堆中的元素排序呢?

🥳🥳这就要利用堆向下调整算法了

思路🥳🥳

①交换首尾元素,将堆中最小的元素(首元素)换到尾部;

②将交换后的尾部元素忽略,剩余元素利用堆向下调整算法(除头外左右子树都是堆)调整为堆;

③重复②直到全部排完,得到降序数组:

代码如下:

//排序
int end = size-1;//堆底元素下标
while (end)
{
  Swap(&a[0], &a[end]);
  AdjustDown(a, end, 0);
  end--;
}

🤩🤩Swap函数在这里:

//交换函数
void Swap(HPDataType* a, HPDataType* b)
{
  HPDataType tmp = *a;
  *a = *b;
  *b = tmp;
}

(3)完整实现🥳🥳

void HeapSort(int* a,int size)
{
  //堆向下调整算法
   for (int i = (size-1 )/ 2 ; i >= 0; i--)
  {
    AdjustDown(a, size, i);
  }
  
  //排序
  int end = size-1;//堆底元素下标
  while (end)
  {
    Swap(&a[0], &a[end]);
    AdjustDown(a, end, 0);
    end--;
  }
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  HeapSort(a, 8);
  return 0;
}

结果如下:

✨✨思考:如果我们要排升序应该利用什么堆呢?相信大家通过上面的学习与理解都知道应该用大堆对不对?具体代码大家可以参考上面小堆实现降序来自己试着写一写哦~

三、结语

以上就是堆的应用——堆排序啦~,我们发现可以不用写堆的实现代码就可以将一个数组排成堆🥳🥳,关键在于堆向上调整与向下调整算法的理解与运用,大家都学废了吗 ,💞💞 完结撒花 ~🎉🎉🎉

相关文章
|
2月前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
48 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
3月前
|
存储 Java
Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。
【10月更文挑战第19天】本文详细介绍了Java中的HashMap和TreeMap,通过具体示例展示了它们在处理复杂数据结构问题时的应用。HashMap以其高效的插入、查找和删除操作著称,而TreeMap则擅长于保持元素的自然排序或自定义排序,两者各具优势,适用于不同的开发场景。
57 1
|
3月前
|
存储 算法 C语言
通义灵码在考研C语言和数据结构中的应用实践 1-5
通义灵码在考研C语言和数据结构中的应用实践,体验通义灵码的强大思路。《趣学C语言和数据结构100例》精选了五个经典问题及其解决方案,包括求最大公约数和最小公倍数、统计字符类型、求特殊数列和、计算阶乘和双阶乘、以及求斐波那契数列的前20项和。通过这些实例,帮助读者掌握C语言的基本语法和常用算法,提升编程能力。
97 4
|
3月前
|
机器学习/深度学习 存储 人工智能
数据结构在实际开发中的广泛应用
【10月更文挑战第20天】数据结构是软件开发的基础,它们贯穿于各种应用场景中,为解决实际问题提供了有力的支持。不同的数据结构具有不同的特点和优势,开发者需要根据具体需求选择合适的数据结构,以实现高效、可靠的程序设计。
238 63
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
80 5
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
76 1
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
47 5
|
2月前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
117 16
|
2月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
265 9
|
2月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
42 1