干货!SQL性能优化,书写高质量SQL语句

简介: 干货!SQL性能优化,书写高质量SQL语句


写SQL语句的时候我们往往关注的是SQL的执行结果,但是是否真的关注了SQL的执行效率,是否注意了SQL的写法规范?

以下的干货分享是在实际开发过程中总结的,希望对大家有所帮助!

1. limit分页优化

当偏移量特别大时,limit效率会非常低。

SELECT id FROM A LIMIT 1000,10 很快

SELECT id FROM A LIMIT 90000,10 很慢

方案一

select id from A order by id limit 90000,10;
复制代码

如果我们结合order by使用。很快,0.04秒就OK。 因为使用了id主键做索引!

当然,是否能够使用索引还需要根据业务逻辑来定,这里只是为了提醒大家,在分页的时候还需谨慎使用!

方案二

select id from A order by id  between 90000 and 90010;
复制代码

2.利用limit 1 、top 1 取得一行

有些业务逻辑进行查询操作时(特别是在根据某一字段DESC,取最大一笔).可以使用limit 1 或者 top 1 来终止[数据库索引]继续扫描整个表或索引。

反例

SELECT id FROM A LIKE 'abc%' 
复制代码

正例

SELECT id FROM A LIKE 'abc%' limit 1
复制代码

3. 任何情况都不要用 select * from table ,用具体的字段列表替换"*",不要返回用不到的字段,避免全盘扫描!

反例

SELECT * FROM A
复制代码

正例

SELECT id FROM A 
复制代码

4. 批量插入优化

反例

INSERT into person(name,age) values('A',24)
INSERT into person(name,age) values('B',24)
INSERT into person(name,age) values('C',24)
复制代码

正例

INSERT into person(name,age) values('A',24),('B',24),('C',24),
复制代码

sql语句的优化主要在于对索引的正确使用,而我们在开发中经常犯的错误便是对表进行全盘扫描,一来影响性能,而来耗费时间!

5.like语句的优化

反例

SELECT id FROM A WHERE name like '%abc%'
复制代码

由于abc前面用了“%”,因此该查询必然走全表查询,除非必要(模糊查询需要包含abc),否则不要在关键词前加%

正例

SELECT id FROM A WHERE name like 'abc%'
复制代码

实例

mysql版本:5.7.26

select nick_name from member where nick_name like '%小明%'
复制代码

like'%小明%' 并未使用索引!

select nick_name from member where nick_name like '小明%'
复制代码

like'小明%' 成功使用索引!

6.where子句使用or的优化

通常使用 union all 或 union 的方式替换“or”会得到更好的效果。where子句中使用了or关键字,索引将被放弃使用。

反例

SELECT id FROM A WHERE num = 10 or num = 20
复制代码

正例

SELECT id FROM A WHERE num = 10 union all SELECT id FROM A WHERE num=20
复制代码

7.where子句中使用 IS NULL 或 IS NOT NULL 的优化

反例

SELECT id FROM A WHERE num IS NULL
复制代码

在where子句中使用 IS NULL 或 IS NOT NULL 判断,索引将被放弃使用,会进行

全表查询

正例

优化成num上设置默认值0,确保表中num没有null值,

IS NULL 的用法在实际业务场景下SQL使用率极高

,我们应注意避免全表扫描

SELECT id FROM A WHERE num=0
复制代码

8.where子句中对字段进行表达式操作的优化

不要在where子句中的“=”左边进行函数、算数运算或其他表达式运算,否则系统将可能无法正确使用索引。

  • 1
SELECT id FROM A WHERE datediff(day,createdate,'2019-11-30')=0 
复制代码

优化为

SELECT id FROM A WHERE createdate>='2019-11-30' and createdate<'2019-12-1'
复制代码
  • 2
SELECT id FROM A WHERE year(addate) <2020
复制代码

优化为

SELECT id FROM A where addate<'2020-01-01'
复制代码

9.排序的索引问题 

mysql查询只是用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引。因此数据库默认排序可以符合要求情况下不要使用排序操作;

尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引

10. 尽量用 union all 替换 union

union和union all的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会

涉及到排序,增加大量的cpu运算,加大资源消耗及延迟

。所以当我们可以

确认不可能出现重复结果集或者不在乎重复结果集的时候

,尽量使用union all而不是union

11.Inner join 和 left join、right join、子查询

  • 第一:inner join内连接也叫等值连接是,left/rightjoin是外连接。
SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id;
SELECT A.id,A.name,B.id,B.name FROM A RIGHT JOIN ON B A.id= B.id;
SELECT A.id,A.name,B.id,B.name FROM A INNER JOIN ON A.id =B.id;
复制代码

经过来之多方面的证实

inner join

性能比较快,因为inner join是等值连接,或许返回的行数比较少。但是我们要记得有些语句隐形的用到了等值连接,如:

SELECT A.id,A.name,B.id,B.name FROM A,B WHERE A.id = B.id;

推荐:能用inner join连接尽量使用inner join连接

  • 第二:子查询的性能又比外连接性能慢,尽量用外连接来替换子查询。

反例

mysql是先对外表A执行全表查询,然后根据uuid逐次执行子查询,如果外层表是一个很大的表,我们可以想象查询性能会表现比这个更加糟糕。

Select* from A where exists (select * from B where id>=3000 and A.uuid=B.uuid);
复制代码

执行时间:2s左右

正例

Select* from A inner join B ON A.uuid=B.uuid where b.uuid>=3000;  这个语句执行测试不到一秒;
复制代码

执行时间:1s不到

  • 第三:使用JOIN时候,应该用小的结果驱动大的结果

left join 左边表结果尽量小,如果有条件应该放到左边先处理,right join同理反向。如:

反例

Select * from A left join B A.id=B.ref_id where  A.id>10
复制代码

正例

select * from (select * from A wehre id >10) T1 left join B on T1.id=B.ref_id;
复制代码

12.exist & in 优化

SELECT * from A WHERE id in ( SELECT id from B )
复制代码
SELECT * from A WHERE id EXISTS ( SELECT 1 from A.id= B.id )
复制代码

分析:

in 是在内存中遍历比较

exist 需要查询数据库,所以当B的数据量比较大时,exists效率优于in**

in()只执行一次,把B表中的所有id字段缓存起来,之后检查A表的id是否与B表中的id相等,如果id相等则将A表的记录加入到结果集中,直到遍历完A表的所有记录。

In 操作的流程原理如同一下代码

List resultSet={};
    Array A=(select * from A);
    Array B=(select id from B);
    for(int i=0;i<A.length;i++) {
          for(int j=0;j<B.length;j++) {
          if(A[i].id==B[j].id) {
             resultSet.add(A[i]);
             break;
          }
       }
    }
    return resultSet;
复制代码

可以看出,当B表数据较大时不适合使用in(),因为会把B表数据全部遍历一次

如:A表有10000条记录,B表有1000000条记录,那么最多有可能遍历10000*1000000次,效率很差。

再如:A表有10000条记录,B表有100条记录,那么最多有可能遍历10000*100次,遍历次数大大减少,效率大大提升。


结论:in()适合B表比A表数据小的情况

exist()会执行A.length()次,执行过程代码如下

List resultSet={};
Array A=(select * from A);
for(int i=0;i<A.length;i++) {
    if(exists(A[i].id) {  //执行select 1 from B where B.id=A.id是否有记录返回
       resultSet.add(A[i]);
    }
}return resultSet;
复制代码

当B表比A表数据大时适合使用exists(),因为它没有那么多遍历操作,只需要再执行一次查询就行。

如:A表有10000条记录,B表有1000000条记录,那么exists()会执行10000次去判断A表中的id是否与B表中的id相等。

如:A表有10000条记录,B表有100000000条记录,那么exists()还是执行10000次,因为它只执行A.length次,可见B表数据越多,越适合exists()发挥效果。

再如:A表有10000条记录,B表有100条记录,那么exists()还是执行10000次,还不如使用in()遍历10000*100次,因为in()是在内存里遍历比较,而exists()需要查询数据库,

我们都知道查询数据库所消耗的性能更高,而内存比较很快。   

结论:exists()适合B表比A表数据大的情况


目录
相关文章
|
6月前
|
SQL 缓存 监控
14个Flink SQL性能优化实践分享
【7月更文挑战第12天】 1. **合理设置并行度**: 根据数据量和资源调整以提高处理速度. 2. **优化数据源**: 使用分区表并进行预处理减少输入量. 3. **数据缓存**: 采用 `BROADCAST` 或 `REPARTITION` 缓存常用数据. 4. **索引和分区**: 创建索引并按常用字段分区. 5. **避免不必要的计算**: 检查并移除多余的计算步骤. 6. **调整内存配置**: 分配足够内存避免性能下降. 7. **优化连接操作**: 选择适合大表和小表的连接方式. 8. **数据类型优化**: 选择合适类型以节省资源. ........
154 1
|
2月前
|
SQL 存储 BI
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
gbase 8a 数据库 SQL合并类优化——不同数据统计周期合并为一条SQL语句
|
2月前
|
SQL 缓存 监控
SQL性能提升指南:五大优化策略与十个实战案例
在数据库性能优化的世界里,SQL优化是提升查询效率的关键。一个高效的SQL查询可以显著减少数据库的负载,提高应用响应速度,甚至影响整个系统的稳定性和扩展性。本文将介绍SQL优化的五大步骤,并结合十个实战案例,为你提供一份详尽的性能提升指南。
58 0
|
4月前
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
681 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
3月前
|
SQL 监控 Oracle
Oracle SQL性能优化全面指南
在数据库管理领域,Oracle SQL性能优化是确保数据库高效运行和数据查询速度的关键
|
3月前
|
SQL 数据挖掘 数据库
SQL查询每秒的数据:技巧、方法与性能优化
id="">SQL查询功能详解 SQL(Structured Query Language,结构化查询语言)是一种专门用于与数据库进行沟通和操作的语言
|
3月前
|
SQL 关系型数据库 MySQL
详解 pypika 模块:SQL 语句生成器,让你再也不用为拼接 SQL 语句而发愁
详解 pypika 模块:SQL 语句生成器,让你再也不用为拼接 SQL 语句而发愁
218 4
|
3月前
|
SQL 存储 数据库
慢SQL对数据库写入性能的影响及优化策略
在数据库管理系统中,慢SQL(即执行缓慢的SQL语句)不仅会影响查询性能,还可能对数据库的写入性能产生不利影响
|
5月前
|
SQL 运维 监控
SQL Server 运维常用sql语句(二)
SQL Server 运维常用sql语句(二)
44 3
|
5月前
|
SQL XML 运维
SQL Server 运维常用sql语句(三)
SQL Server 运维常用sql语句(三)
40 1