写SQL语句的时候我们往往关注的是SQL的执行结果,但是是否真的关注了SQL的执行效率,是否注意了SQL的写法规范?
以下的干货分享是在实际开发过程中总结的,希望对大家有所帮助!
1. limit分页优化
当偏移量特别大时,limit效率会非常低。
SELECT id FROM A LIMIT 1000,10 很快
SELECT id FROM A LIMIT 90000,10 很慢
方案一:
select id from A order by id limit 90000,10; 复制代码
如果我们结合order by使用。很快,0.04秒就OK。 因为使用了id主键做索引!
当然,是否能够使用索引还需要根据业务逻辑来定,这里只是为了提醒大家,在分页的时候还需谨慎使用!
方案二
select id from A order by id between 90000 and 90010; 复制代码
2.利用limit 1 、top 1 取得一行
有些业务逻辑进行查询操作时(特别是在根据某一字段DESC,取最大一笔).可以使用limit 1 或者 top 1 来终止[数据库索引]继续扫描整个表或索引。
反例
SELECT id FROM A LIKE 'abc%' 复制代码
正例
SELECT id FROM A LIKE 'abc%' limit 1 复制代码
3. 任何情况都不要用 select * from table ,用具体的字段列表替换"*",不要返回用不到的字段,避免全盘扫描!
反例
SELECT * FROM A 复制代码
正例
SELECT id FROM A 复制代码
4. 批量插入优化
反例
INSERT into person(name,age) values('A',24) INSERT into person(name,age) values('B',24) INSERT into person(name,age) values('C',24) 复制代码
正例
INSERT into person(name,age) values('A',24),('B',24),('C',24), 复制代码
sql语句的优化主要在于对索引的正确使用,而我们在开发中经常犯的错误便是对表进行全盘扫描,一来影响性能,而来耗费时间!
5.like语句的优化
反例
SELECT id FROM A WHERE name like '%abc%' 复制代码
由于abc前面用了“%”,因此该查询必然走全表查询,除非必要(模糊查询需要包含abc),否则不要在关键词前加%
正例
SELECT id FROM A WHERE name like 'abc%' 复制代码
实例
mysql版本:5.7.26
select nick_name from member where nick_name like '%小明%' 复制代码
like'%小明%' 并未使用索引!
select nick_name from member where nick_name like '小明%' 复制代码
like'小明%' 成功使用索引!
6.where子句使用or的优化
通常使用 union all 或 union 的方式替换“or”会得到更好的效果。where子句中使用了or关键字,索引将被放弃使用。
反例
SELECT id FROM A WHERE num = 10 or num = 20 复制代码
正例
SELECT id FROM A WHERE num = 10 union all SELECT id FROM A WHERE num=20 复制代码
7.where子句中使用 IS NULL 或 IS NOT NULL 的优化
反例
SELECT id FROM A WHERE num IS NULL 复制代码
在where子句中使用 IS NULL 或 IS NOT NULL 判断,索引将被放弃使用,会进行
全表查询
。
正例
优化成num上设置默认值0,确保表中num没有null值,
IS NULL 的用法在实际业务场景下SQL使用率极高
,我们应注意避免全表扫描
SELECT id FROM A WHERE num=0 复制代码
8.where子句中对字段进行表达式操作的优化
不要在where子句中的“=”左边进行函数、算数运算或其他表达式运算,否则系统将可能无法正确使用索引。
- 1
SELECT id FROM A WHERE datediff(day,createdate,'2019-11-30')=0 复制代码
优化为
SELECT id FROM A WHERE createdate>='2019-11-30' and createdate<'2019-12-1' 复制代码
- 2
SELECT id FROM A WHERE year(addate) <2020 复制代码
优化为
SELECT id FROM A where addate<'2020-01-01' 复制代码
9.排序的索引问题
mysql查询只是用一个索引,因此如果where子句中已经使用了索引的话,那么order by中的列是不会使用索引。因此数据库默认排序可以符合要求情况下不要使用排序操作;
尽量不要包含多个列的排序,如果需要最好给这些列创建复合索引。
10. 尽量用 union all 替换 union
union和union all的差异主要是前者需要将两个(或者多个)结果集合并后再进行唯一性过滤操作,这就会
涉及到排序,增加大量的cpu运算,加大资源消耗及延迟
。所以当我们可以
确认不可能出现重复结果集或者不在乎重复结果集的时候
,尽量使用union all而不是union
11.Inner join 和 left join、right join、子查询
- 第一:inner join内连接也叫等值连接是,left/rightjoin是外连接。
SELECT A.id,A.name,B.id,B.name FROM A LEFT JOIN B ON A.id =B.id; SELECT A.id,A.name,B.id,B.name FROM A RIGHT JOIN ON B A.id= B.id; SELECT A.id,A.name,B.id,B.name FROM A INNER JOIN ON A.id =B.id; 复制代码
经过来之多方面的证实
inner join
性能比较快,因为inner join是等值连接,或许返回的行数比较少。但是我们要记得有些语句隐形的用到了等值连接,如:
SELECT A.id,A.name,B.id,B.name FROM A,B WHERE A.id = B.id;
推荐:能用inner join连接尽量使用inner join连接
- 第二:子查询的性能又比外连接性能慢,尽量用外连接来替换子查询。
反例
mysql是先对外表A执行全表查询,然后根据uuid逐次执行子查询,如果外层表是一个很大的表,我们可以想象查询性能会表现比这个更加糟糕。
Select* from A where exists (select * from B where id>=3000 and A.uuid=B.uuid); 复制代码
执行时间:2s左右
正例
Select* from A inner join B ON A.uuid=B.uuid where b.uuid>=3000; 这个语句执行测试不到一秒; 复制代码
执行时间:1s不到
- 第三:使用JOIN时候,应该用小的结果驱动大的结果
left join 左边表结果尽量小,如果有条件应该放到左边先处理,right join同理反向。如:
反例
Select * from A left join B A.id=B.ref_id where A.id>10 复制代码
正例
select * from (select * from A wehre id >10) T1 left join B on T1.id=B.ref_id; 复制代码
12.exist & in 优化
SELECT * from A WHERE id in ( SELECT id from B ) 复制代码
SELECT * from A WHERE id EXISTS ( SELECT 1 from A.id= B.id ) 复制代码
分析:
in 是在内存中遍历比较
exist 需要查询数据库,所以当B的数据量比较大时,exists效率优于in**
in()只执行一次,把B表中的所有id字段缓存起来,之后检查A表的id是否与B表中的id相等,如果id相等则将A表的记录加入到结果集中,直到遍历完A表的所有记录。
In 操作的流程原理如同一下代码
List resultSet={}; Array A=(select * from A); Array B=(select id from B); for(int i=0;i<A.length;i++) { for(int j=0;j<B.length;j++) { if(A[i].id==B[j].id) { resultSet.add(A[i]); break; } } } return resultSet; 复制代码
可以看出,当B表数据较大时不适合使用in(),因为会把B表数据全部遍历一次
如:A表有10000条记录,B表有1000000条记录,那么最多有可能遍历10000*1000000次,效率很差。
再如:A表有10000条记录,B表有100条记录,那么最多有可能遍历10000*100次,遍历次数大大减少,效率大大提升。
结论:in()适合B表比A表数据小的情况
exist()会执行A.length()次,执行过程代码如下
List resultSet={}; Array A=(select * from A); for(int i=0;i<A.length;i++) { if(exists(A[i].id) { //执行select 1 from B where B.id=A.id是否有记录返回 resultSet.add(A[i]); } }return resultSet; 复制代码
当B表比A表数据大时适合使用exists(),因为它没有那么多遍历操作,只需要再执行一次查询就行。
如:A表有10000条记录,B表有1000000条记录,那么exists()会执行10000次去判断A表中的id是否与B表中的id相等。
如:A表有10000条记录,B表有100000000条记录,那么exists()还是执行10000次,因为它只执行A.length次,可见B表数据越多,越适合exists()发挥效果。
再如:A表有10000条记录,B表有100条记录,那么exists()还是执行10000次,还不如使用in()遍历10000*100次,因为in()是在内存里遍历比较,而exists()需要查询数据库,
我们都知道查询数据库所消耗的性能更高,而内存比较很快。
结论:exists()适合B表比A表数据大的情况