Python 列表解析式竟然支持异步?

简介: Python 列表解析式竟然支持异步?


摘要

PEP-492 和 PEP-525 通过 async/await 语法,引入了对原生协程和异步生成器的支持。本 pep 提议给列表、集合、字典解析式和生成器表达式添加异步的版本。

基本原理和目标

Python 广泛地支持同步的推导式,允许使用简单而简洁的语法生成列表、字典和集合。我们提议为异步代码实现类似的语法结构。

为了说明可读性的改善,请考虑下面的例子:

result = []
async for i in aiter():
    if i % 2:
        result.append(i)

有了提议的异步解析式语法,上面的代码会变得非常简短:

result = [i async for i in aiter() if i % 2]

本 PEP 也使得在各种解析式中使用 await 表达式成为可能:

result = [await fun() for fun in funcs]

规范

异步的解析式

我们提议允许在列表、集合与字典解析式中使用 async。待 PEP-525 被批准之后,我们还可以创建异步的生成器表达式。

例子:

  • 集合解析式:{i async for i in agen()}
  • 列表解析式:[i async for i in agen()]
  • 字典解析式:{i: i ** 2 async for i in agen()}
  • 生成器表达式:(i ** 2 async for i in agen())

允许在异步解析式和生成器表达式中使用 async for 与 if 以及 for 子句:

dataset = {data for line in aiter()
                async for data in line
                if check(data)}
data = {data for line in aiter() async for data in line if check(data)}

异步解析式只允许在“async def”函数中使用。

原则上,异步生成器表达式允许用在任何上下文中。然而,在 Python 3.6 中,由于 async 和 await 只是“软关键字”(soft-keyword),异步生成器表达式只允许在 async def 函数中使用。一旦 async 和 await 在 Python 3.7 中成为保留关键字,这个限制将被移除。

解析式中的 await

我们提议允许在异步和同步解析式中使用 await 表达式:

result = [await fun() for fun in funcs]
result = {await fun() for fun in funcs}
result = {fun: await fun() for fun in funcs}
result = [await fun() for fun in funcs if await smth]
result = {await fun() for fun in funcs if await smth}
result = {fun: await fun() for fun in funcs if await smth}
result = [await fun() async for fun in funcs]
result = {await fun() async for fun in funcs}
result = {fun: await fun() async for fun in funcs}
result = [await fun() async for fun in funcs if await smth]
result = {await fun() async for fun in funcs if await smth}
result = {fun: await fun() async for fun in funcs if await smth}

这只在 async def 函数体中有效。

语法的更新

本提议需要在语法层面做一个修改:在 comp_for 中添加可选的“async”关键字:

comp_for: [ASYNC] 'for' exprlist 'in' or_test [comp_iter]

解析式的 AST 节点将有一个新的 is_async 参数。

向后兼容性

本提案是完全向后兼容的。

接受

在 2016 年 9 月 6 日[1],PEP-530 被 Guido 接受。

参考材料

1、 mail.python.org/pipermail/p…

2、github.com/1st1/cpytho…

3、bugs.python.org/issue28008

致谢

感谢 Guido van Rossum、Victor Stinner 和 Elvis pranskevichuss 对于这个 pep 的反馈、代码检视和讨论。

版权

本文档已进入公共领域。

源文件:github.com/python/peps…

目录
相关文章
|
10天前
|
JSON 缓存 开发者
淘宝商品详情接口(item_get)企业级全解析:参数配置、签名机制与 Python 代码实战
本文详解淘宝开放平台taobao.item_get接口对接全流程,涵盖参数配置、MD5签名生成、Python企业级代码实现及高频问题排查,提供可落地的实战方案,助你高效稳定获取商品数据。
|
12天前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
141 2
|
18天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
241 0
|
18天前
|
机器学习/深度学习 JSON Java
Java调用Python的5种实用方案:从简单到进阶的全场景解析
在机器学习与大数据融合背景下,Java与Python协同开发成为企业常见需求。本文通过真实案例解析5种主流调用方案,涵盖脚本调用到微服务架构,助力开发者根据业务场景选择最优方案,提升开发效率与系统性能。
168 0
机器学习/深度学习 算法 自动驾驶
141 0
|
26天前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
131 0
|
1月前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
371 2
|
1月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
93 0
|
2月前
|
数据采集 消息中间件 并行计算
Python多线程与多进程性能对比:从原理到实战的深度解析
在Python编程中,多线程与多进程是提升并发性能的关键手段。本文通过实验数据、代码示例和通俗比喻,深入解析两者在不同任务类型下的性能表现,帮助开发者科学选择并发策略,优化程序效率。
119 1
|
2月前
|
JSON 供应链 API
京东工业商品详情API数据python解析
京东工业商品详情API专为工业品采购设计,提供商品参数、资质认证、供应链等专业数据,适用于企业采购与供应链管理。支持多SKU查询,采用HTTPS协议与JSON格式,保障数据安全与高效调用。附Python调用示例,便于快速集成。

热门文章

最新文章

推荐镜像

更多