【动态规划】【记忆化搜索】C++算法:546移除盒子

简介: 【动态规划】【记忆化搜索】C++算法:546移除盒子

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

记忆化搜索

LeetCode546. 移除盒子

给出一些不同颜色的盒子 boxes ,盒子的颜色由不同的正数表示。

你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止。每一轮你可以移除具有相同颜色的连续 k 个盒子(k >= 1),这样一轮之后你将得到 k * k 个积分。

返回 你能获得的最大积分和 。

示例 1:

输入:boxes = [1,3,2,2,2,3,4,3,1]

输出:23

解释:

[1, 3, 2, 2, 2, 3, 4, 3, 1]

----> [1, 3, 3, 4, 3, 1] (33=9 分)
----> [1, 3, 3, 3, 1] (1
1=1 分)

----> [1, 1] (33=9 分)
----> [] (2
2=4 分)

示例 2:

输入:boxes = [1,1,1]

输出:9

示例 3:

输入:boxes = [1]

输出:1

提示:

1 <= boxes.length <= 100

1 <= boxes[i] <= 100

动态规划

动态规划的状态表示:

dp[l][r][k]表示消除以下子序列获得的最大得分。

boxes[0,l)已经消除或不会对消除此子序列有影响。

boxes[l,r]全部没有消除。

boxes(r,n)除k个boxes[r]外,全部消除。

思路

假定boxs[i1]、boxs[i2]、boxs[i3]、boxes[i4]相等,且不存在其它等于boxs[i4]的盒子。消除i4时有如下可能。

为了方便,用g(l,r)代替 dp[l+1][r-1][0] f(r,k)代替dp[0][r][k]

i4 f[i4-1][0]+(k+1) ^2 l ,i4,0
i3 i4 f[i3][1]+g(i3,i4) l ,i4,0 -->l,i3,1
i2 i4 f[i2][1]+g(i2,i4) l ,i4,0 ->l,i2,1
i1 i4 f[i1][1]+g(i1,i4) l ,i4,0 >l,i1,1
i1 i2 i4 f[i1][2]+g(i1,i2)+g{i2,i4) l ,i4,0 --> l,i2,1 -> l,i1->2
i1 i3 i4 f[i1][2]+g(i1,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i1->2
i2 i3 i4 f[i2][2]+g(i2,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i2->2
i1 i2 i3 i4 f[i1][3]+g(i1,i2)+g{i2,i3)++g{i3,i4) l ,i4,0 --> l,i3,1 ->l,i2->2–>l,i1,3

我们以i1 i2 i4 为例:

f[i4][0]可能等于 f[i2][1] + g[i2,i4]

f[i2][1]可能等于f[i1][2] + g[i1+i2]

==> f[i4][0] 可能等于 f[i1]i2] + g[i1][i2] + g[i2][i4]

** 结论** 枚举消除时,不用枚举所有一同消除的下标,只需要枚举前一个下标。这意味着转移方程的时间复杂度从O(2n)降为O(n)。

状态数为n3,故空间复杂度为O(n3),时间复杂度为:O(n4)。许多状态不可能同时存在,实际时间复杂度低得多。

动态规划分析

动态规划的转移方程表示:

所有盒子都会被消除,所以boxes[r]也是,枚举boxes[r]被消除的可能:

情况一:boxes[r]被消除时,r的下标最小(最左边)。转移方程为:(k+1)*(k+1) + dp[l][r-1][0]

情况二:boxes[r]被消除时,i的小标比r小,如果有多个i取最大值。转移方程为:dp[i+1][r+1][0] + dp[l][i][k+1]

动态规划的初始状态:

全部为0,表示未计算。

动态规划的填表顺序:

计算dp[0][n-1][0]需要的状态。

动态规划的返回值:

dp[0][n-1][0]

枚举了不可能的情况

比如: {1,2,1,1} 由于boxs[2]和boxs[3]之间没有其它数字,所以它们一定同时被消除。

假定boxs[i1]boxs[i2]=x,且i1+1i2。

假定一:i1和i2被两次消除。 不失一般性,假定i1先被消除。包括i1共k1个x被消除,包括i2共k2个x被消除。

假定二:假定i1和i2之间没数据。除不消i1外,其它操作及顺序和假定一相同,直到消除i2。则时消除k0+k1+k2个x。 k1个boxs[i1]左边可以有k0个可以一并消除。在假定1中,这个k0x无论是一次消除还是多次消除都小于等于k0k0。除了这些x外,其它完全一样。假定一<=k0k0+k1k2+k2k2 假定二:(k0+k1+k2)^2。显然假定一 <= 假定二

这k0个x可能在假定一中和更左边的结合,那假定二可能等待这些都消除了,再消除i2。

结论: 假定一不存在,但它一定不优于假定二,假定二存在,所以多枚举了假定一,不会带来错误结果。

代码

核心代码

class Solution {
public:
  int removeBoxes(vector<int>& boxes) {
    m_c = boxes.size();
    m_boxes = boxes;
    for (int i = 0; i < m_c; i++)
    {
      m_dp[i].assign(m_c, vector<int>(m_c));
    }
    return Cal(0,m_c-1,0);
  }
  int Cal(const int& l, const int& r, const int& k)
  {
    if (l > r)
    {
      return 0;
    }
    if (0 != m_dp[l][r][k])
    {
      return m_dp[l][r][k];
    }
    m_dp[l][r][k] = Cal(l, r - 1, 0) + (k + 1) * (k + 1);
    for (int i = l; i < r; i++)
    {
      if (m_boxes[i] == m_boxes[r])
      {
        m_dp[l][r][k] = max(m_dp[l][r][k], Cal(l, i, k + 1)+ Cal(i+1,r-1,0));
      }
    }
    return m_dp[l][r][k];
  }
  int m_c;
  vector<int> m_boxes;
  vector < vector<int>> m_dp[100];
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<int> boxes;
  {
    Solution sln;
    boxes = { 1, 2, 2, 1, 1, 1, 2, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(30, res);
  }
  {
    Solution sln;
    boxes = { 1, 3, 2, 2, 2, 3, 4, 3, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(23, res);
  }
  {
    Solution sln;
    boxes = { 1,1,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(9, res);
  }
  {
    Solution sln;
    boxes = { 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(1, res);
  }
  {
    Solution sln;
    boxes = { 1,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(5, res);
  }
  {
    Solution sln;
    boxes = { 1,2,2,1,1,1,2,1,1,2,1,2,1,1,2,2,1,1,2,2,1,1,1,2,2,2,2,1,2,1,1,2,2,1,2,1,2,2,2,2,2,1,2,1,2,2,1,1,1,2,2,1,2,1,2,2,1,2,1,1,1,2,2,2,2,2,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,1,1,1,2,1,2,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(2758, res);
  }
}

2023年1月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

memset(m_dp, 0, sizeof(m_dp));

return Cal(boxes,0, boxes.size() - 1, 0);

}

int Cal(const vector& boxes,int l, int r, int k)

{

if (l > r)

{

return 0;

}

if (0 != m_dp[l][r][k])

{

return m_dp[l][r][k];

}

int iSum = Cal(boxes,l, r - 1, 0) + (k + 1)*(k + 1);

for (int i = l; i < r; i++)

{

if (boxes[i] != boxes[r])

{

continue;

}

iSum = max(iSum, Cal(boxes, l, i, k + 1) + Cal(boxes, i + 1, r - 1, 0));

}

m_dp[l][r][k] = iSum;

return m_dp[l][r][k];

}

int m_dp[100][100][100] ;

};

2023年6月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

m_c = boxes.size();

memset(m_aLRNum, -1, sizeof(m_aLRNum));

return remove(boxes,0, m_c - 1, 0);

}

int remove(const vector& boxes,const int left, const int right, int k)

{

if (right < left)

{

return 0;

}

int& iRet = m_aLRNum[left][right][k];

if (iRet >= 0)

{

return iRet;

}

iRet = (1 + k)*(1 + k) + remove(boxes,left, right - 1, 0);

int tmp = right-1;

//[1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1],可以先消除中间,只保留两个1

while (tmp >= left)

{

while ((tmp >= left) && (boxes[tmp] != boxes[right]))

{

tmp–;

}

if (tmp < left)

{

return iRet;

}

iRet = max(iRet, remove(boxes, tmp + 1, right - 1, 0) + remove(boxes, left, tmp, k + 1));

tmp–;

}

return iRet;

}

int m_c;

int m_aLRNum[100][100][100];//m_aLRNum[l][r][k] 消除nums的[l.r]及和nums[r]相等的k个数

};

2023年8月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

m_boxes = boxes;

//dp[l][r][k]表示 boxes[l] 到boxes[r] 是最后消除的,消除时后面有k同颜色的数

memset(m_dp, 0, sizeof(m_dp));

return Cal(0, boxes.size() - 1, 0);

}

int Cal(int left, int r, int k)

{

if (r < left)

{

return 0;

}

int& iRet = m_dp[left][r][k];

if (0 != iRet)

{

return iRet;

}

iRet = Cal(left, r - 1, 0) + (k + 1) * (k + 1);//直接消除

for (int i = r - 1; i >= left; i–)

{

if (m_boxes[i] != m_boxes[r])

{

continue;

}

iRet = max(iRet, Cal(left, i, k + 1) + Cal(i + 1, r - 1, 0));

}

return iRet;

}

int m_dp[100][100][100];

vector m_boxes;

};


相关文章
|
2天前
|
存储 监控 算法
员工屏幕监控系统之 C++ 图像差分算法
在现代企业管理中,员工屏幕监控系统至关重要。本文探讨了其中常用的图像差分算法,该算法通过比较相邻两帧图像的像素差异,检测屏幕内容变化,如应用程序切换等。文中提供了C++实现代码,并介绍了其在实时监控、异常行为检测和数据压缩等方面的应用,展示了其实现简单、效率高的特点。
29 15
|
2天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
24 12
|
1月前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
55 19
|
1月前
|
算法 Java C++
【潜意识Java】蓝桥杯算法有关的动态规划求解背包问题
本文介绍了经典的0/1背包问题及其动态规划解法。
50 5
|
4月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
1月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
52 2
|
2月前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
存储 算法 安全
基于哈希表的文件共享平台 C++ 算法实现与分析
在数字化时代,文件共享平台不可或缺。本文探讨哈希表在文件共享中的应用,包括原理、优势及C++实现。哈希表通过键值对快速访问文件元数据(如文件名、大小、位置等),查找时间复杂度为O(1),显著提升查找速度和用户体验。代码示例展示了文件上传和搜索功能,实际应用中需解决哈希冲突、动态扩容和线程安全等问题,以优化性能。
|
2月前
|
算法 安全 C++
用 C++ 算法控制员工上网的软件,关键逻辑是啥?来深度解读下
在企业信息化管理中,控制员工上网的软件成为保障网络秩序与提升办公效率的关键工具。该软件基于C++语言,融合红黑树、令牌桶和滑动窗口等算法,实现网址精准过滤、流量均衡分配及异常连接监测。通过高效的数据结构与算法设计,确保企业网络资源优化配置与安全防护升级,同时尊重员工权益,助力企业数字化发展。
65 4
|
3月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
81 2