【动态规划】【记忆化搜索】C++算法:546移除盒子

简介: 【动态规划】【记忆化搜索】C++算法:546移除盒子

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

记忆化搜索

LeetCode546. 移除盒子

给出一些不同颜色的盒子 boxes ,盒子的颜色由不同的正数表示。

你将经过若干轮操作去去掉盒子,直到所有的盒子都去掉为止。每一轮你可以移除具有相同颜色的连续 k 个盒子(k >= 1),这样一轮之后你将得到 k * k 个积分。

返回 你能获得的最大积分和 。

示例 1:

输入:boxes = [1,3,2,2,2,3,4,3,1]

输出:23

解释:

[1, 3, 2, 2, 2, 3, 4, 3, 1]

----> [1, 3, 3, 4, 3, 1] (33=9 分)
----> [1, 3, 3, 3, 1] (1
1=1 分)

----> [1, 1] (33=9 分)
----> [] (2
2=4 分)

示例 2:

输入:boxes = [1,1,1]

输出:9

示例 3:

输入:boxes = [1]

输出:1

提示:

1 <= boxes.length <= 100

1 <= boxes[i] <= 100

动态规划

动态规划的状态表示:

dp[l][r][k]表示消除以下子序列获得的最大得分。

boxes[0,l)已经消除或不会对消除此子序列有影响。

boxes[l,r]全部没有消除。

boxes(r,n)除k个boxes[r]外,全部消除。

思路

假定boxs[i1]、boxs[i2]、boxs[i3]、boxes[i4]相等,且不存在其它等于boxs[i4]的盒子。消除i4时有如下可能。

为了方便,用g(l,r)代替 dp[l+1][r-1][0] f(r,k)代替dp[0][r][k]

i4 f[i4-1][0]+(k+1) ^2 l ,i4,0
i3 i4 f[i3][1]+g(i3,i4) l ,i4,0 -->l,i3,1
i2 i4 f[i2][1]+g(i2,i4) l ,i4,0 ->l,i2,1
i1 i4 f[i1][1]+g(i1,i4) l ,i4,0 >l,i1,1
i1 i2 i4 f[i1][2]+g(i1,i2)+g{i2,i4) l ,i4,0 --> l,i2,1 -> l,i1->2
i1 i3 i4 f[i1][2]+g(i1,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i1->2
i2 i3 i4 f[i2][2]+g(i2,i3)+g{i3,i4) l ,i4,0 --> l,i3,1 -> l,i2->2
i1 i2 i3 i4 f[i1][3]+g(i1,i2)+g{i2,i3)++g{i3,i4) l ,i4,0 --> l,i3,1 ->l,i2->2–>l,i1,3

我们以i1 i2 i4 为例:

f[i4][0]可能等于 f[i2][1] + g[i2,i4]

f[i2][1]可能等于f[i1][2] + g[i1+i2]

==> f[i4][0] 可能等于 f[i1]i2] + g[i1][i2] + g[i2][i4]

** 结论** 枚举消除时,不用枚举所有一同消除的下标,只需要枚举前一个下标。这意味着转移方程的时间复杂度从O(2n)降为O(n)。

状态数为n3,故空间复杂度为O(n3),时间复杂度为:O(n4)。许多状态不可能同时存在,实际时间复杂度低得多。

动态规划分析

动态规划的转移方程表示:

所有盒子都会被消除,所以boxes[r]也是,枚举boxes[r]被消除的可能:

情况一:boxes[r]被消除时,r的下标最小(最左边)。转移方程为:(k+1)*(k+1) + dp[l][r-1][0]

情况二:boxes[r]被消除时,i的小标比r小,如果有多个i取最大值。转移方程为:dp[i+1][r+1][0] + dp[l][i][k+1]

动态规划的初始状态:

全部为0,表示未计算。

动态规划的填表顺序:

计算dp[0][n-1][0]需要的状态。

动态规划的返回值:

dp[0][n-1][0]

枚举了不可能的情况

比如: {1,2,1,1} 由于boxs[2]和boxs[3]之间没有其它数字,所以它们一定同时被消除。

假定boxs[i1]boxs[i2]=x,且i1+1i2。

假定一:i1和i2被两次消除。 不失一般性,假定i1先被消除。包括i1共k1个x被消除,包括i2共k2个x被消除。

假定二:假定i1和i2之间没数据。除不消i1外,其它操作及顺序和假定一相同,直到消除i2。则时消除k0+k1+k2个x。 k1个boxs[i1]左边可以有k0个可以一并消除。在假定1中,这个k0x无论是一次消除还是多次消除都小于等于k0k0。除了这些x外,其它完全一样。假定一<=k0k0+k1k2+k2k2 假定二:(k0+k1+k2)^2。显然假定一 <= 假定二

这k0个x可能在假定一中和更左边的结合,那假定二可能等待这些都消除了,再消除i2。

结论: 假定一不存在,但它一定不优于假定二,假定二存在,所以多枚举了假定一,不会带来错误结果。

代码

核心代码

class Solution {
public:
  int removeBoxes(vector<int>& boxes) {
    m_c = boxes.size();
    m_boxes = boxes;
    for (int i = 0; i < m_c; i++)
    {
      m_dp[i].assign(m_c, vector<int>(m_c));
    }
    return Cal(0,m_c-1,0);
  }
  int Cal(const int& l, const int& r, const int& k)
  {
    if (l > r)
    {
      return 0;
    }
    if (0 != m_dp[l][r][k])
    {
      return m_dp[l][r][k];
    }
    m_dp[l][r][k] = Cal(l, r - 1, 0) + (k + 1) * (k + 1);
    for (int i = l; i < r; i++)
    {
      if (m_boxes[i] == m_boxes[r])
      {
        m_dp[l][r][k] = max(m_dp[l][r][k], Cal(l, i, k + 1)+ Cal(i+1,r-1,0));
      }
    }
    return m_dp[l][r][k];
  }
  int m_c;
  vector<int> m_boxes;
  vector < vector<int>> m_dp[100];
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
  assert(t1 == t2);
}
template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
  if (v1.size() != v2.size())
  {
    assert(false);
    return;
  }
  for (int i = 0; i < v1.size(); i++)
  {
    Assert(v1[i], v2[i]);
  }
}
int main()
{
  vector<int> boxes;
  {
    Solution sln;
    boxes = { 1, 2, 2, 1, 1, 1, 2, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(30, res);
  }
  {
    Solution sln;
    boxes = { 1, 3, 2, 2, 2, 3, 4, 3, 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(23, res);
  }
  {
    Solution sln;
    boxes = { 1,1,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(9, res);
  }
  {
    Solution sln;
    boxes = { 1 };
    auto res = sln.removeBoxes(boxes);
    Assert(1, res);
  }
  {
    Solution sln;
    boxes = { 1,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(5, res);
  }
  {
    Solution sln;
    boxes = { 1,2,2,1,1,1,2,1,1,2,1,2,1,1,2,2,1,1,2,2,1,1,1,2,2,2,2,1,2,1,1,2,2,1,2,1,2,2,2,2,2,1,2,1,2,2,1,1,1,2,2,1,2,1,2,2,1,2,1,1,1,2,2,2,2,2,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,2,2,1,1,1,1,1,1,1,2,1,2,2,1 };
    auto res = sln.removeBoxes(boxes);
    Assert(2758, res);
  }
}

2023年1月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

memset(m_dp, 0, sizeof(m_dp));

return Cal(boxes,0, boxes.size() - 1, 0);

}

int Cal(const vector& boxes,int l, int r, int k)

{

if (l > r)

{

return 0;

}

if (0 != m_dp[l][r][k])

{

return m_dp[l][r][k];

}

int iSum = Cal(boxes,l, r - 1, 0) + (k + 1)*(k + 1);

for (int i = l; i < r; i++)

{

if (boxes[i] != boxes[r])

{

continue;

}

iSum = max(iSum, Cal(boxes, l, i, k + 1) + Cal(boxes, i + 1, r - 1, 0));

}

m_dp[l][r][k] = iSum;

return m_dp[l][r][k];

}

int m_dp[100][100][100] ;

};

2023年6月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

m_c = boxes.size();

memset(m_aLRNum, -1, sizeof(m_aLRNum));

return remove(boxes,0, m_c - 1, 0);

}

int remove(const vector& boxes,const int left, const int right, int k)

{

if (right < left)

{

return 0;

}

int& iRet = m_aLRNum[left][right][k];

if (iRet >= 0)

{

return iRet;

}

iRet = (1 + k)*(1 + k) + remove(boxes,left, right - 1, 0);

int tmp = right-1;

//[1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1],可以先消除中间,只保留两个1

while (tmp >= left)

{

while ((tmp >= left) && (boxes[tmp] != boxes[right]))

{

tmp–;

}

if (tmp < left)

{

return iRet;

}

iRet = max(iRet, remove(boxes, tmp + 1, right - 1, 0) + remove(boxes, left, tmp, k + 1));

tmp–;

}

return iRet;

}

int m_c;

int m_aLRNum[100][100][100];//m_aLRNum[l][r][k] 消除nums的[l.r]及和nums[r]相等的k个数

};

2023年8月代码

class Solution {

public:

int removeBoxes(vector& boxes) {

m_boxes = boxes;

//dp[l][r][k]表示 boxes[l] 到boxes[r] 是最后消除的,消除时后面有k同颜色的数

memset(m_dp, 0, sizeof(m_dp));

return Cal(0, boxes.size() - 1, 0);

}

int Cal(int left, int r, int k)

{

if (r < left)

{

return 0;

}

int& iRet = m_dp[left][r][k];

if (0 != iRet)

{

return iRet;

}

iRet = Cal(left, r - 1, 0) + (k + 1) * (k + 1);//直接消除

for (int i = r - 1; i >= left; i–)

{

if (m_boxes[i] != m_boxes[r])

{

continue;

}

iRet = max(iRet, Cal(left, i, k + 1) + Cal(i + 1, r - 1, 0));

}

return iRet;

}

int m_dp[100][100][100];

vector m_boxes;

};


相关文章
|
4月前
|
存储 监控 算法
基于 C++ 哈希表算法实现局域网监控电脑屏幕的数据加速机制研究
企业网络安全与办公管理需求日益复杂的学术语境下,局域网监控电脑屏幕作为保障信息安全、规范员工操作的重要手段,已然成为网络安全领域的关键研究对象。其作用类似网络空间中的 “电子眼”,实时捕获每台电脑屏幕上的操作动态。然而,面对海量监控数据,实现高效数据存储与快速检索,已成为提升监控系统性能的核心挑战。本文聚焦于 C++ 语言中的哈希表算法,深入探究其如何成为局域网监控电脑屏幕数据处理的 “加速引擎”,并通过详尽的代码示例,展现其强大功能与应用价值。
99 2
|
2月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
60 0
|
4月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
131 17
|
3月前
|
机器学习/深度学习 存储 算法
基于 C++ 布隆过滤器算法的局域网上网行为控制:URL 访问过滤的高效实现研究
本文探讨了一种基于布隆过滤器的局域网上网行为控制方法,旨在解决传统黑白名单机制在处理海量URL数据时存储与查询效率低的问题。通过C++实现URL访问过滤功能,实验表明该方法可将内存占用降至传统方案的八分之一,查询速度提升约40%,假阳性率可控。研究为优化企业网络管理提供了新思路,并提出结合机器学习、改进哈希函数及分布式协同等未来优化方向。
79 0
|
5月前
|
存储 监控 算法
基于 C++ 哈希表算法的局域网如何监控电脑技术解析
当代数字化办公与生活环境中,局域网的广泛应用极大地提升了信息交互的效率与便捷性。然而,出于网络安全管理、资源合理分配以及合规性要求等多方面的考量,对局域网内计算机进行有效监控成为一项至关重要的任务。实现局域网内计算机监控,涉及多种数据结构与算法的运用。本文聚焦于 C++ 编程语言中的哈希表算法,深入探讨其在局域网计算机监控场景中的应用,并通过详尽的代码示例进行阐释。
109 4
|
7月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
3月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
82 0
|
3月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
160 0
|
5月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
159 12
|
6月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
123 16

热门文章

最新文章