大模型应用实践:AIGC探索之旅(上)

简介: 大模型应用实践:AIGC探索之旅(上)




随着OpenAI推出ChatGPT,AIGC迎来了前所未有的发展机遇。大模型技术已经不仅仅是技术趋势,而是深刻地塑造着我们交流、工作和思考的方式。本文介绍了笔者理解的大模型和AIGC的密切联系,从历史沿革到实际应用案例,再到面临的技术挑战和伦理监管问题,探讨这一技术浪潮如何引领我们进入一个智能化的未来。


前言

 引言:AI时代,未来已来


2022.11月30号OpenAI推出ChatGPT后随即爆火,五天注册用户数过百万,2个月用户破1亿,成为史上增长最快的消费者应用。随后各大厂也纷纷卷入AIGC领域,迎来国产GPT大模型发布潮(百度"文新一言"、阿里"通义千问"、商汤"商量 SenseChat"等)及AI创业公司成立潮(王小川、李开复等)。
大模型代表一个新的技术AI时代的来临,大模型展现出的强大的语义理解,内容生成以及泛化能力正在逐渐改变我们的工作与生活方式(AI+)、工作方式和思维方式。正如《陆奇的大模型观》所讲当前我们正迎来新范式的新拐点,从信息系统到模型系统过渡,"模型"知识无处不在。人工智能的浪潮正在引领新的技术革命,或许可称为第五次工业革命。

(【注】推荐大家去阅读《陆奇的大模型观》。强烈建议直接看陆奇演讲视频 奇绩创坛| 陆奇最新演讲完整视频|大模型带来的新范式:演讲涵盖陆奇对大模型时代的宏观思考,包括拐点的内在动因、技术演进、创业公司结构性机会点以及给创业者的建议。


在人工智能的新时代,大模型技术正成为推动AIGC(人工智能生成内容)前沿的关键力量。本文将通过介绍我们的AIGC项目,来深入探讨这一技术的开发、实施与应用。因个人能力限制,文章中可能存在一些理解或表述错误的地方,希望各位大佬能及时批评和指正。

 AIGC简介与发展历程


在与业务等交谈过程中,经常会听大家提到AIGC、ChatGPT、大模型、XX等许多概念,但也发现部分内容混淆。首先来解决下当下最火概念AIGC、ChatGPT、大模型到底是什么?

  1. ChatGPT "Chat Generative Pre-trained Transformer”的缩写,ChatGPT是一种基于人工智能技术的聊天机器人,能用于问答、文本摘要生成、机器翻译、分类、代码生成和对话AI,是一款由OpenAI开发的基于Transformer架构的的自然语言处理工具。
  2. AIGC,全名“AI generated content”,又称生成式AI,意为人工智能生成内容。狭义概念是利用AI自动生成内容的生产方式(UGC->PGC->AIGC);广义的AIGC可以看作像人类一样具备生成创造能力的AI技术,包括但不限于文本生成、音频生成、图像生成、视频生成及图像、视频、文本间的跨模态生成等等。
  3. 大模型:大模型通常是指参数量非常大的深度学习模型,如Transformer架构的GPT-3、BERT、T5等模型。这些模型通过在海量数据上进行训练,能够学习到丰富的语言和知识表示,并展现出强大的自然语言处理能力。


AIGC是一个更广泛的概念,包括多种类型的内容生成;ChatGPT则是一个具体的产品。简单可以这么理解:AIGC是平台,ChatGPT是平台上的某个软件。
结合人工智能的演进历程,AIGC发展大致分三个阶段[人工智能行业生成内容(AIGC)白皮书(2022年)(地址:https://www.vzkoo.com/document/20220907cc987d2511ffc7c895ed6dd4.html?spm=ata.21736010.0.0.56075d51YB56mA)]:


  • 早期萌芽阶段(1950s-1990s)


早期萌芽阶段(1950s-1990s),受限于当时的科技水平,AIGC仅限于小范围实验。

  1. 1957 年,莱杰伦·希勒和伦纳德·艾萨克森完成历史第一支由计算机创作的弦乐四重奏《伊利亚克组曲》。
  2. 1966年,约瑟夫·魏岑鲍姆和肯尼斯·科尔比开发了世界第一款可人机对话的机器人Eliza。
  3. 80年代中期,IBM基于(Hidden Markov Model,HMM)创造了语音控制打字机Tangora。
  4. 80年度末-90年度中,由于高昂系统成本无法带来可观的商业化变现,AIGC未取得重大突破。


  • 沉淀积累阶段(1990s-2010s)


沉淀积累阶段(1990s-2010s),AIGC从实验性向实用性逐渐转变。

  1. 2006年,深度学习算法取得重大突破,及图形处理器(GPU)、张量处理器(TPU)等算力设备性能不断提升互联网规模膨胀提供海量训练数据,但AIGC仍受限算法效率,应用及效果有待提升。
  2. 2007年,世界第一部完全由人工智能创作的小说《1 The Road》问世,虽其可读性不强,但象征意义远大于实际意义。
  3. 2012年,微软公开展示了一个全自动同声传译系统,基于深层神经网络(Deep Neural Network,DNN)可以自动将英文演讲者的内容通过语音识别、语言翻译、语音合成等技术生成中文语音。


  • 快速发展阶段(2010s至今)


快速发展阶段(2010s至今),深度学习模型不断迭代,AIGC突破性发展。

  1. 2014年,随着以生成式对抗网络(Generative Adversarial Network,GAN)为代表深度学习算法的提出和迭代更新,AIGC迎来了新时代,生成内容百花齐放,效果逐渐逼真直至人类难以分辨。
  2. 2017年,微软人工智能少女“小冰”推出了世界首部100%由人工智能创作的诗集《阳光失了玻璃窗》。
  3. 2018年英伟达发布了StyleGAN模型可以自动生成图片,目前已经发展到了第四代模型StyleGAN-XL,其生成的高分辨率图片让人难以分辨真假。
  4. 2019 年,DeepMind 发布了 DVD-GAN 模型用以生成连续视频,在草地、广场等明确场景下表现突出。
  5. 2021 年,OpenAI 推出了 DALL-E 并于一年后推出了升级版本 DALL-E-2,主要应用于文本与图像的交互生成内容,用户只需输入简短的描述性文字,DALL-E-2 即可创作 出相应极高质量的卡通、写实、抽象等风格的绘画作品。
  6. 2022年,12月OpenAI的ChatGPT在推出,两个月后用户数量就突破1亿了。在文本生成、代码生成与修改、多轮对话等领域,已经展现了大幅超越过去AI 问答系统的能力。
  7. 随后各大厂也纷纷卷入AIGC领域(百度“文新一言”、阿里“通义千问”、商汤“商量”SenseChat等),涌现运用AI于写作、编曲、绘画和视频制作等创意领域。目前 AIGC 技术可以自动生成文字、图片、音频、视频,甚至 3D模型和代码,在搜索引擎、艺术创作、影音游戏,以及金融、教育、医疗、工业等领域的应用前景十分广阔。
  8. 据 TBanic Date 估计,到 2025 年人工智能生成数据占比将达到 10%。


 大模型与AIGC的关联


大模型(Large Models)与AIGC(人工智能生成内容)之间存在密切的关联,AIGC依赖于大型的人工智能模型来生成高质量的内容。它们是人工智能技术发展的两个重要方面。简单来说:

  1. 技术基础:大模型是实现AIGC的重要技术基础之一。大模型通常经过训练,以从海量数据中学习语言、图像或音频的模式。这些模型能够理解和模仿人类创作的风格和结构,从而在不同的领域中生成新的内容。例如,使用大模型可以生成文本、图像等内容,这些都是AIGC的核心应用场景。
  2. 性能提升:随着大模型的发展,其生成内容的能力也在不断提高,使得AIGC的质量更加逼真和丰富,从而拓展了应用范围。
  3. 协同工作:在某些情况下,大模型可能需要与其他技术(如计算机视觉或自然语言理解)结合使用,共同为AIGC服务。
  4. 产业影响:大模型的广泛应用推动了AIGC相关产业的发展,AIGC利用这些模型在媒体、娱乐、教育、科研和商业领域中创造价值。

总的来说,大模型和AIGC相互促进、共同发展,形成了一个紧密联系的技术生态系统。在这个系统中,大模型提供了底层的技术支持,而AIGC则代表了一种实际的应用形式。


大模型应用实践:AIGC探索之旅(下):https://developer.aliyun.com/article/1443303



目录
相关文章
|
4月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
311 14
|
2月前
|
人工智能 自然语言处理 安全
新浪微博AIGC业务应用探索-AIGC应用平台助力业务提效实践
本次分享围绕AIGC技术在新浪微博的应用展开,涵盖四个部分。首先分析AIGC为微博带来的机遇与挑战,特别是在内容安全和模型幻觉等问题上的应对策略;其次介绍通过工程架构快速实现AIGC技术落地的方法,包括统一部署模型和服务编排;接着展示AIGC在微博的具体应用场景,如评论互动、视频总结和智能客服等;最后展望未来,探讨大模型的发展趋势及其在多模态和特定业务场景中的应用前景。
|
3月前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
221 2
|
4月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
131 2
|
4月前
|
弹性计算 自然语言处理 安全
国内基础大模型的独立性及应用大模型的依赖性
本文探讨了国内基础大模型(如阿里巴巴的通义千问)的独立性及其应用大模型的依赖性。详细分析了这些模型的研发过程、应用场景及技术挑战,包括数据收集、模型架构设计和算力支持等方面。同时,讨论了微调模型、插件式设计和独立部署等不同实现方式对应用大模型的影响。
81 0
|
30天前
|
人工智能 自然语言处理 搜索推荐
【潜意识Java】了解并详细分析Java与AIGC的结合应用和使用方式
本文介绍了如何将Java与AIGC(人工智能生成内容)技术结合,实现智能文本生成。
59 5
|
1月前
|
编解码 人工智能 算法
国家扶持超高清产业背景下:视频云AIGC的超高清技术实践
本次分享由阿里云视频云高级产品解决方案架构师陈震主讲,聚焦国家扶持超高清产业背景下,视频云AIGC的超高清技术实践。内容涵盖超高清产业发展趋势与挑战、阿里视频云的应对方案及应用案例。通过全链路超高清解决方案,结合AI、云计算等技术,提供从内容生产、传输到播放的完整支持,助力行业应对超高清视频带来的技术与市场挑战。
|
3月前
|
弹性计算 算法 搜索推荐
活动实践 | 通过函数计算部署ComfyUI以实现一个AIGC图像生成系统
ComfyUI是基于节点工作流稳定扩散算法的新一代WebUI,支持高质量图像生成。用户可通过阿里云函数计算快速部署ComfyUI应用模板,实现个性化定制与高效服务。首次生成图像因冷启动需稍长时间,之后将显著加速。此外,ComfyUI允许自定义模型和插件,满足多样化创作需求。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
【10月更文挑战第31天】2024年,AI大模型在软件开发领域的应用取得了显著进展,从自动化代码生成、智能代码审查到智能化测试,极大地提升了开发效率和代码质量。然而,技术挑战、伦理与安全问题以及模型可解释性仍是亟待解决的关键问题。开发者需不断学习和适应,以充分利用AI的优势。
|
3月前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
115 2

热门文章

最新文章