【算法优选】 动态规划之斐波那契数列模型

简介: 【算法优选】 动态规划之斐波那契数列模型


🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表⽰
  2. 状态转移⽅程
  3. 初始化
  4. 填表顺序
  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🍀第 N 个泰波那契数

🚩题目描述

泰波那契序列 Tn 定义如下:

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

  • 示例 1:
    输入:n = 4
    输出:4
    解释:
    T_3 = 0 + 1 + 1 = 2
    T_4 = 1 + 1 + 2 = 4
  • 示例 2:
    输入:n = 25
    输出:1389537
class Solution {
    public int tribonacci(int n) {
    }
}

🚩算法流程

  1. 状态表⽰:

这道题可以「根据题⽬的要求」直接定义出状态表⽰:

dp[i] 表⽰:第 i 个泰波那契数的值。

  1. 状态转移⽅程:

题⽬已经⾮常贴⼼的告诉我们了:

dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

  1. 初始化:

从我们的递推公式可以看出, dp[i] 在 i = 0 以及 i = 1 的时候是没有办法进⾏推导的,因为 dp[-2] 或 dp[-1] 不是⼀个有效的数据。因此我们需要在填表之前,将 0, 1, 2 位置的值初始化。题⽬中已经告诉我们 dp[0] = 0,dp[1] = dp[2] = 1 。

  1. 填表顺序:

毫⽆疑问是「从左往右」。

  1. 返回值:

应该返回 dp[n] 的值。

🚩代码实现

class Solution {
    public int tribonacci(int n) {
        int[] dp = new int[n + 3];
        dp[0] = 0;
        dp[1] = 1;
        dp[2] = 1;
        for(int i = 0; i <  n; i++) {
            dp[i + 3] = dp[i] + dp[i + 1] + dp[i + 2];
        }
        return dp[n];
    }
}

🎄使用最小花费爬楼梯

🚩题目描述

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

  • 示例 1:
    输入:cost = [10,15,20]
    输出:15
    解释:你将从下标为 1 的台阶开始。
    -支付 15 ,向上爬两个台阶,到达楼梯顶部。
    总花费为 15 。
  • 示例 2:
    输入:cost = [1,100,1,1,1,100,1,1,100,1]
    输出:6
    解释:你将从下标为 0 的台阶开始。
    -支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
    -支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
    -支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
    -支付 1 ,向上爬一个台阶,到达楼梯顶部。
    总花费为 6 。
class Solution {
    public int minCostClimbingStairs(int[] cost) {
    }
}

🚩算法思路

🎈解法⼀:

  1. 状态表⽰:

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰:

第⼀种:以 i 位置为结尾,然后一系列操作

dp[i] 表⽰:到达 i 位置时的最⼩花费。(注意:到达 i 位置的时候, i 位置的钱不需要算上)

  1. 状态转移⽅程:

根据最近的⼀步,分情况讨论:

▪ 先到达 i - 1 的位置,然后⽀付 cost[i - 1] ,接下来⾛⼀步⾛到 i 位置:dp[i - 1] + csot[i - 1] ;

▪ 先到达 i - 2 的位置,然后⽀付 cost[i - 2] ,接下来⾛⼀步⾛到 i 位置:dp[i - 2] + csot[i - 2] 。

  1. 初始化:

从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。

  1. 填表顺序:

根据「状态转移⽅程」可得,遍历的顺序是「从左往右」。

  1. 返回值:

根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。

🎈解法⼆:

  1. 状态表⽰:

这道题可以根据「经验+题⽬要求」直接定义出状态表⽰:第⼆种:以 i 位置为起点,进行一系列操作。

dp[i] 表⽰:从 i 位置出发,到达楼顶,此时的最⼩花费。

  1. 状态转移⽅程:

根据最近的⼀步,分情况讨论:

▪ ⽀付 cost[i] ,往后⾛⼀步,接下来从 i + 1 的位置出发到终点: dp[i + 1] + cost[i] ;

▪ ⽀付 cost[i] ,往后⾛两步,接下来从 i + 2 的位置出发到终点: dp[i + 2] + cost[i] ;

我们要的是最⼩花费,因此 dp[i] = min(dp[i + 1], dp[i + 2]) + cost[i] 。

  1. 初始化:

为了保证填表的时候不越界,我们需要初始化最后两个位置的值,结合状态表⽰易得: dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2]

  1. 填表顺序:

根据「状态转移⽅程」可得,遍历的顺序是「从右往左」。

  1. 返回值:

根据「状态表⽰以及题⽬要求」,需要返回 dp[n] 位置的值。也就是dp[0]与dp[1]中的较小值

🚩代码实现:

解法一:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] dp = new int[n + 1];
        for(int i = 2; i <= n; i++) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}

解法二:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = cost.length;
        int[] dp = new int[n];
        dp[n - 1] = cost[n - 1]; dp[n - 2] = cost[n - 2];
        for(int i = n - 3; i >= 0; i--) {
            dp[i] = Math.min(dp[i + 1], dp[i + 2]) + cost[i];
        }
        return Math.min(dp[0], dp[1]);
    }
}

🌲解码方法

🚩题目描述

一条包含字母 A-Z 的消息通过以下映射进行了 编码 :

‘A’ -> “1”

‘B’ -> “2”

‘Z’ -> “26”

要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:

“AAJF” ,将消息分组为 (1 1 10 6)

“KJF” ,将消息分组为 (11 10 6)

注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。

给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。

题目数据保证答案肯定是一个 32 位 的整数。

  • 示例 1:
    输入:s = “12”
    输出:2
    解释:它可以解码为 “AB”(1 2)或者 “L”(12)。
  • 示例 2:
    输入:s = “226”
    输出:3
    解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。
  • 示例 3:
    输入:s = “06”
    输出:0
    解释:“06” 无法映射到 “F” ,因为存在前导零(“6” 和 “06” 并不等价)。
class Solution {
    public int numDecodings(String s) {
    }
}

🚩算法思路

类似于斐波那契数列~

  1. 状态表⽰:

根据以往的经验,对于⼤多数线性 dp ,我们经验上都是「以某个位置结束或者开始」做⽂章,这⾥我们继续尝试「⽤i位置为结尾」结合「题⽬要求」来定义状态表⽰。dp[i] 表⽰:字符串中 [0,i] 区间上,⼀共有多少种编码⽅法。

  1. 状态转移⽅程:

定义好状态表⽰,我们就可以分析 i 位置的 dp 值,如何由「前⾯」或者「后⾯」的信息推导出

来。

关于 i 位置的编码状况,我们可以分为下⾯两种情况:

  • 让 i 位置上的数单独解码成⼀个字⺟;
  • 让 i 位置上的数与 i - 1 位置上的数结合,解码成⼀个字⺟。

下⾯我们就上⾯的两种解码情况,继续分析:

  • 让i位置上的数单独解码成⼀个字⺟,就存在「解码成功」和「解码失败」两种情况:
  • 解码成功:当 i 位置上的数在 [1, 9] 之间的时候,说明 i 位置上的数是可以单独解码的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 1] 区间上的解码⽅法。因为 [0, i - 1] 区间上的所有解码结果,后⾯填上⼀个 i 位置解码后的字⺟就可以了。此时 dp[i] = dp[i - 1] ;
  • 解码失败:当 i 位置上的数是 0 的时候,说明 i 位置上的数是不能单独解码的,那么此时 [0, i] 区间上不存在解码⽅法。因为 i 位置如果单独参与解码,但是解码失败了,那么前⾯做的努⼒就全部⽩费了。此时 dp[i] = 0 。
  • 让 i 位置上的数与 i - 1 位置上的数结合在⼀起,解码成⼀个字⺟,也存在「解码成功」和「解码失败」两种情况:
  • 解码成功:当结合的数在 [10, 26] 之间的时候,说明 [i - 1, i] 两个位置是可以解码成功的,那么此时 [0, i] 区间上的解码⽅法应该等于 [0, i - 2 ]区间上的解码⽅法,原因同上。此时dp[i] = dp[i - 2] ;
  • 解码失败:当结合的数在 [0, 9] 和 [27 , 99] 之间的时候,说明两个位置结合后解码失败(这⾥⼀定要注意 00 01 02 03 04 …这⼏种情况),那么此时 [0, i] 区间上的解码⽅法就不存在了,原因依旧同上。此时 dp[i] = 0 。

综上所述: dp[i] 最终的结果应该是上⾯四种情况下,解码成功的两种的累加和(因为我们关⼼的是解码⽅法,既然解码失败,就不⽤加⼊到最终结果中去),因此可以得到状态转移⽅程( dp[i] 默认初始化为 0 ):

  • 当 s[i] 上的数在 [1, 9] 区间上时: dp[i] += dp[i - 1] ;
  • 当 s[i - 1] 与 s[i] 上的数结合后,在 [10, 26] 之间的时候: dp[i] += dp[i - 2] ;

如果上述两个判断都不成⽴,说明没有解码⽅法, dp[i] 就是默认值 0 。

  1. 初始化:
  • ⽅法⼀(直接初始化):
    由于可能要⽤到 i - 1 以及 i - 2 位置上的 dp 值,因此要先初始化「前两个位置」。
    初始化 dp[0] :
  • 当 s[0] == ‘0’ 时,没有编码⽅法,结果 dp[0] = 0 ;
  • 当 s[0] != ‘0’ 时,能编码成功, dp[0] = 1

初始化 dp[1] :

  • 当 s[1] 在 [1,9] 之间时,能单独编码,此时 dp[1] += dp[0] (原因同上,dp[1] 默认为 0 )
  • 当 s[0] 与 s[1] 结合后的数在 [10, 26] 之间时,说明在前两个字符中,⼜有⼀种编码⽅式,此时 dp[1] += 1
  • ⽅法⼆(添加辅助位置初始化):
    可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
  • 辅助结点⾥⾯的值要保证后续填表是正确的;
  • 下标的映射关系
  1. 填表顺序:

毫⽆疑问是「从左往右」

  1. 返回值:

应该返回 dp[n - 1] 的值,表⽰在 [0, n - 1] 区间上的编码⽅法。

🚩代码实现

class Solution {
    public int numDecodings(String ss) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = ss.length();
        char[] s = ss.toCharArray();
        int[] dp = new int[n];
        if(s[0] != '0') {
            dp[0] = 1; // 初始化第⼀个位置
        }
        if(n == 1) {
            return dp[0]; // 处理边界情况
        }
        // 初始化第⼆个位置
        if(s[1] != '0' && s[0] != '0') {
            dp[1] += 1;
        }
        int t = (s[0] - '0') * 10 + s[1] - '0';
        if(t >= 10 && t <= 26) {
            dp[1] += 1;
        }
        for(int i = 2; i < n; i++) {
            // 先处理第⼀种情况
            if(s[i] != '0') {
                dp[i] += dp[i - 1];
            }
            // 处理第⼆种情况
            int tt = (s[i - 1] - '0') * 10 + s[i] - '0';
            if(tt >= 10 && tt <= 26) {
                dp[i] += dp[i - 2];
            }
        }
        return dp[n - 1];
    }
}

代码优化如下:

class Solution {
    public int numDecodings(String ss) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = ss.length();
        char[] s = ss.toCharArray();
        int[] dp = new int[n + 1];
        dp[0] = 1; // 保证后续填表是正确的
        if(s[1 - 1] != '0') dp[1] = 1;
        for(int i = 2; i <= n; i++) {
            // 先处理第⼀种情况
            if(s[i - 1] != '0') {
                dp[i] += dp[i - 1];
            }
            // 处理第⼆种情况
            int tt = (s[i - 2] - '0') * 10 + s[i - 1] - '0';
            if(tt >= 10 && tt <= 26) {
                dp[i] += dp[i - 2]; 
            }
        }
        return dp[n];
    }
}

⭕总结

关于《【算法优选】 动态规划之斐波那契数列模型》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

相关文章
|
5月前
|
机器学习/深度学习 存储 算法
动态规划算法深度解析:0-1背包问题
0-1背包问题是经典的组合优化问题,目标是在给定物品重量和价值及背包容量限制下,选取物品使得总价值最大化且每个物品仅能被选一次。该问题通常采用动态规划方法解决,通过构建二维状态表dp[i][j]记录前i个物品在容量j时的最大价值,利用状态转移方程避免重复计算子问题,从而高效求解最优解。
662 1
|
5月前
|
机器学习/深度学习 人工智能 JSON
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
Microsoft Research最新推出的rStar2-Agent在AIME24数学基准测试中以80.6%的准确率超越超大规模模型DeepSeek-R1,展现“思考更聪明”而非“更长”的AI推理新方向。
208 8
微软rStar2-Agent:新的GRPO-RoC算法让14B模型在复杂推理时超越了前沿大模型
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
361 2
|
5月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
130 8
|
5月前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
|
5月前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
粒子群算法模型深度解析与实战应用
|
5月前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
379 0
|
6月前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
192 2
|
5月前
|
机器学习/深度学习 数据采集 传感器
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
【WOA-CNN-LSTM】基于鲸鱼算法优化深度学习预测模型的超参数研究(Matlab代码实现)
341 0
|
5月前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
159 0