Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据

简介: Google Earth Engine(GEE)——存档的NRT FIRMS全球VIIRS和MODIS火灾产品矢量数据

存档的NRT FIRMS全球VIIRS和MODIS矢量数据

可见光红外成像辐射仪套件(VIIRS)375米热异常/活动火情产品提供了来自NASA/NOAA索米国家极轨伙伴关系(索米NPP)和NOAA-20联合卫星上的VIIRS传感器的数据。375米数据是对中分辨率成像分光仪(MODIS)火灾探测的补充;它们在热点探测方面都显示出良好的一致性,但375米数据的空间分辨率提高,对相对较小区域的火灾有更大的反应,并提供了更好的大火周界图。375米的数据还具有更好的夜间性能。因此,这些数据很适合用于支持火灾管理(如近实时警报系统),以及其他需要提高火灾绘图保真度的科学应用。前言 – 人工智能教程

VIIRS NRT 375米活动火灾产品来自:Suomi NPP(VNP14IMGTDL_NRT)和NOAA-20,正式称为JPSS-1,(VJ114IMGTDL_NRT)。

备注¶

为了统一Suomi NPP的VIIRS文件名称,VIIRS NRT 375米产品的简称从VNP14IMGT改为VNP14IMGTDL_NRT(2016年4月18日)。

MODIS C61从2000年11月(针对Terra)和2002年7月(针对Aqua)至今都有。

VIIRS 375米的数据目前可从2012年1月20日到现在。

低可信度的夜间像素仅出现在东经11度至西经110度、北纬7度至南纬55度的地理区域。该区域描述了南大西洋磁异常的影响区域,该区域可能导致中红外通道I4的虚假亮度温度,从而导致潜在的假阳性警报。这些已从FIRMS分发的NRT数据中删除。

每一年的档案数据都被下载,并以shapefiles的形式摄入。你可以在这里下载档案资料:

Archive Download - NASA | LANCE | FIRMS

你可以在这里阅读更多关于MODIS产品的信息,以及VIIRS产品的信息。

参考文献

NRT VIIRS 375 m Active Fire product VJ114IMGTDL_NRT distributed from NASA FIRMS. Available on-line [https://earthdata.nasa.gov/firms]. doi: 10.5067/FIRMS/VIIRS/VJ114IMGT_NRT.002
NRT VIIRS 375 m Active Fire product VNP14IMGT distributed from NASA FIRMS. Available on-line [https://earthdata.nasa.gov/firms].  doi:10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002
MODIS Collection 61 NRT Hotspot / Active Fire Detections MCD14DL distributed from NASA FIRMS.Available on-line [https://earthdata.nasa.gov/firms]. 10.5067/FIRMS/MODIS/MCD14DL.NRT.0061
MODIS Collection 6 Hotspot / Active Fire Detections MCD14ML distributed from NASA FIRMS. Available on-line [https://earthdata.nasa.gov/firms]. doi: 10.5067/FIRMS/MODIS/MCD14ML

Attribute fields for NRT VIIRS 375 m active fire data distributed by FIRMS

Attribute Short Description Long Description
Latitude Latitude Center of nominal 375 m fire pixel
Longitude Longitude Center of nominal 375 m fire pixel
Bright_ti4 Brightness temperature I-4 VIIRS I-4 channel brightness temperature of the fire pixel measured in Kelvin.
Scan Along Scan pixel size The algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size.
Track Along Track pixel size The algorithm produces approximately 375 m pixels at nadir. Scan and track reflect actual pixel size.
Acq_Date Acquisition Date Date of VIIRS acquisition.
Acq_Time Acquisition Time Time of acquisition/overpass of the satellite (in UTC).
Satellite Satellite N= Suomi National Polar-orbiting Partnership (Suomi NPP), 1=NOAA-20 (designated JPSS-1 prior to launch)
Confidence Confidence This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence values are set to low, nominal and high. Low confidence daytime fire pixels are typically associated with areas of sun glint and lower relative temperature anomaly (<15K) in the mid-infrared channel I4. Nominal confidence pixels are those free of potential sun glint contamination during the day and marked by strong (>15K) temperature anomaly in either day or nighttime data. High confidence fire pixels are associated with day or nighttime saturated pixels.
Version Version (Collection and source) Version identifies the collection (e.g. VIIRS Collection 1) and source of data processing: Near Real-Time (NRT suffix added to collection) or Standard Processing (collection only). "1.0NRT" - Collection 1 NRT processing, "1.0" - Collection 1 Standard processing
Bright_ti5 Brightness temperature I-5 I-5 Channel brightness temperature of the fire pixel measured in Kelvin.
FRP Fire Radiative Power FRP depicts the pixel-integrated fire radiative power in MW (megawatts). FRP depicts the pixel-integrated fire radiative power in MW (megawatts). Given the unique spatial and spectral resolution of the data, the VIIRS 375 m fire detection algorithm was customized and tuned in order to optimize its response over small fires while balancing the occurrence of false alarms. Frequent saturation of the mid-infrared I4 channel (3.55-3.93 µm) driving the detection of active fires requires additional tests and procedures to avoid pixel classification errors. As a result, sub-pixel fire characterization (e.g., fire radiative power [FRP] retrieval) is only viable across small and/or low-intensity fires. Systematic FRP retrievals are based on a hybrid approach combining 375 and 750 m data. In fact, starting in 2015 the algorithm incorporated additional VIIRS channel M13 (3.973-4.128 µm) 750 m data in both aggregated and unaggregated format.
DayNight Day or Night D= Daytime fire, N= Nighttime fire

Attribute fields for MCD14ML (standard quality) data active fire data distributed by FIRMS

Attribute Short Description Long Description
Latitude Latitude Center of 1km fire pixel but not necessarily the actual location of the fire as one or more fires can be detected within the 1km pixel.
Longitude Longitude Center of 1km fire pixel but not necessarily the actual location of the fire as one or more fires can be detected within the 1km pixel.
Brightness Brightness temperature 21 (Kelvin) Channel 21/22 brightness temperature of the fire pixel measured in Kelvin.
Scan Along Scan pixel size The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. Scan and track reflect actual pixel size.
Track Along Track pixel size The algorithm produces 1km fire pixels but MODIS pixels get bigger toward the edge of scan. Scan and track reflect actual pixel size.
Acq_Date Acquisition Date Data of MODIS acquisition.
Acq_Time Acquisition Time Time of acquisition/overpass of the satellite (in UTC).
Satellite Satellite A = Aqua and T = Terra.
Confidence Confidence (0-100%) This value is based on a collection of intermediate algorithm quantities used in the detection process. It is intended to help users gauge the quality of individual hotspot/fire pixels. Confidence estimates range between 0 and 100% and are assigned one of the three fire classes (low-confidence fire, nominal-confidence fire, or high-confidence fire).
Version Version (Collection and source) Version identifies the collection (e.g. MODIS Collection 6) and source of data processing: Near Real-Time (NRT suffix added to collection) or Standard Processing (collection only). "6.1NRT" - Collection 61 NRT processing,  "6.1" - Collection 61 Standard processing
Bright_T31 Brightness temperature 31 (Kelvin) Channel 31 brightness temperature of the fire pixel measured in Kelvin.
FRP Fire Radiative Power (MW - megawatts) Depicts the pixel-integrated fire radiative power in MW (megawatts).
Type* Inferred hot spot type 0 = presumed vegetation fire,1 = active volcano, 2 = other static land source, 3 = offshore
DayNight Day or Night D= Daytime fire, N= Nighttime fire

Dataset structure

The MODIS and VIIRS yearly exports were ingested and names based on their years (MODIS 2000-2020) and (VIIRS 2012-2021)

MODIS Path: projects/sat-io/open-datasets/MODIS_MCD14DL/MCD14DL_YYYY Example Path: projects/sat-io/open-datasets/MODIS_MCD14DL/MCD14DL_2000

VIIRS Path: projects/sat-io/open-datasets/VIIRS/VNP14IMGTDL_NRT_YYYY Example Path: projects/sat-io/open-datasets/VIIRS/VNP14IMGTDL_NRT_2012

Earth Engine Snippet

Sample paths are provided for two years only change the year to get different years

var viirs_2012 = ee.FeatureCollection("projects/sat-io/open-datasets/VIIRS/VNP14IMGTDL_NRT_2012");
var modis_2012 = ee.FeatureCollection("projects/sat-io/open-datasets/MODIS_MCD14DL/MCD14DL_2012");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-events-layers/ARCHIVAL-NRT-FIRMS-VIIRS-DATA

License

The FIRMS data is distributed under a license similar to Public domain license and distributed by Land, Atmosphere Near real-time Capability for EOS (LANCE) for Fire Information for Resource Management System (FIRMS)

Acknowledgements

We acknowledge the use of data and/or imagery from NASA's Fire Information for Resource Management System (FIRMS) (Fire Information for Resource Management System (FIRMS) | Earthdata), part of NASA's Earth Observing System Data and Information System (EOSDIS).

Created by: Land, Atmosphere Near real-time Capability for EOS (LANCE) for Fire Information for Resource Management System (FIRMS), NASA

Curated in GEE by : Samapriya Roy

Keywords: Archival fire, MODIS, VIIRS, Daytime, Nigh time, Thermal anomalies, FIRMS, LANCE, NASA, vector

Last updated: 2022-04-28

Last updated on GEE: 2022-04-28

 

相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2479 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
222 0
|
5月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
604 0
|
6月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
6月前
|
编解码 人工智能 计算机视觉
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
Google Earth Engine(GEE)——Umbra卫星翁布拉合成孔径雷达公开数据
95 0
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
88 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
143 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
77 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
263 0

热门文章

最新文章