GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大

简介: GEE、PIE和AI Earth平台进行案例评测:NDVI计算,结果差异蛮大

本文主要是通过对比GEE、PIE和AI Earth平台,主要是计算不同平台,同一个NDVI的均值计算,我们已测试结果如何。

1. PIE-engine

PIE获取北京市获取某一个区域的区域的NDVI平均值,但是结果却显示没有,只能通过加载图层点击图层上的点获取某一个点的NDVI值,而且这里用到区域统计使用的函数仅有min,max,sum计算,而使用mean计算,就没有结果。当我尝试使用以上三个可以计算的reducer的时候结果会呈现下面的结果:

代码链接:

遥感计算云服务

函数:

reduceRegion(reducer,geometry,scale)

对特定区域的所有像素进行统计,返回结果为一个JSON对象;目前可完成最大、最小和求和统计计算。

方法参数:

- image(Image)

Image实例。

- reducer(Reducer)

统计类型,包括最大值、最小值和求和。

- geometry(Geometry)

统计区域范围。默认是影像第一个波段的范围。

- scale(Number)

统计采样比例。

返回值:Dictionary

PIE代码:

//加载北京市边界
var roi = pie.FeatureCollection("NGCC/CHINA_PROVINCE_BOUNDARY")
    .filter(pie.Filter.eq("name", "北京市"))
    .first()
    .geometry();
Map.centerObject(roi, 6);
Map.addLayer(roi, { color: "ff0000", fillColor: "00000000", width: 3 }, "北京市");
 
 
//按区域、时间筛选影像
var imgCol = pie.ImageCollection("LC08/01/T1")
    .filterBounds(roi)
    .filterDate("2019-8-01", "2019-8-30");
print("imgCol", imgCol);
Map.addLayer(imgCol.select(["B2", "B3", "B4"]).mosaic().clip(roi), { min: 0, max: 2500, bands: ["B4", "B3", "B2"] }, "imgCol", false);
 
//获取影像数量
var count = imgCol.size();
print(count);
 function imgCalculate (image1) {
     var ndvi1=image1.normalizedDifference(["B5","B4"]);
     return image1.addBands(ndvi1).rename("NDVI")
 }
var redc = imgCol.map(imgCalculate).mosaic().clip(roi)
print("redc",redc)
var jisuan = redc.select("NDVI").reduceRegion(pie.Reducer.mean(),geometry0,300)
print("jisuan",jisuan)

 

 

2.GEE

代码:

//这里ROI是我自己的矢量,这里就不共享了,大家可以换其它地方测试
/*color:#5f9ea0*/
var geometry0 = ee.Geometry.Polygon([
    [
        [
            117.1224239290218,
            40.20026024458343
        ],
        [
            117.2502681492852,
            40.20026024458343
        ],
        [
            117.2502681492852,
            40.13354201708273
        ],
        [
            117.1224239290218,
            40.13354201708273
        ],
        [
            117.1224239290218,
            40.20026024458343
        ]
    ]
], null);
 function imgCalculate (image1) {
     var ndvi1=image1.normalizedDifference(["B5","B4"]);
     return image1.addBands(ndvi1).rename("NDVI");
 }
 
 
function ndv_LANDSAT_8(image) {
              var ndvi = image.normalizedDifference(['B5', 'B4']);
  return image.addBands(ndvi.rename('NDVI'));
}
 
var  imgCol = ee.ImageCollection("LANDSAT/LC08/C01/T1_SR").filterBounds(roi)
    .filterDate("2019-8-01", "2019-8-30").map(ndv_LANDSAT_8);
print("imgCol", imgCol);
Map.addLayer(imgCol.select(["B2", "B3", "B4"]).mosaic().clip(roi), { min: 0, max: 2500, bands: ["B4", "B3", "B2"] }, "imgCol", false);
 
//获取影像数量
var count = imgCol.size();
print(count);
var redc = imgCol.mosaic().clip(roi)
print("redc",redc)
var jisuan = redc.select("NDVI").reduceRegion(ee.Reducer.mean(),geometry0,300)
print("jisuan",jisuan)

pie 中在NDVI计算的函数中出现了问题,两者的函数构造是不同的,如果直接用PIE中的function代码直接放入GEE中是无法运行的,主要问题如下面所示和代码区别:

 

//PIE——NDVI函数
function imgCalculate (image1) {
     var ndvi1=image1.normalizedDifference(["B5","B4"]);
     return image1.addBands(ndvi1).rename("NDVI");
 }
 
  
//GEE——NDVI函数
function ndv_LANDSAT_8(image) {
              var ndvi = image.normalizedDifference(['B5', 'B4']);
  return image.addBands(ndvi.rename('NDVI'));
}

 

Image (Error)

ImageCollection.mosaic: Error in map(ID=LC08_122032_20190826): Image.rename: The number of names (1) must match the number of bands (13).

最终更改后的结果:

 

3.AI Earth

在AI Earth中并没有Landsat 8 C01数据集,所以这里只能使用Landsat 8 C02数据集.

同样我们使用GEE也重新计算了:

 

 

import aie
aie.Authenticate()
aie.Initialize()
region = aie.Geometry.Polygon([
    [
        [
            117.1224239290218,
            40.20026024458343
        ],
        [
            117.2502681492852,
            40.20026024458343
        ],
        [
            117.2502681492852,
            40.13354201708273
        ],
        [
            117.1224239290218,
            40.13354201708273
        ],
        [
            117.1224239290218,
            40.20026024458343
        ]
    ]]
)
# 归一化植被指数
def getNDVI(image):
    ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']).rename(['NDVI'])
    return ndvi
# 指定需要检索的区域
feature_collection = aie.FeatureCollection('China_Province') \
                        .filter(aie.Filter.eq('province', '北京市'))
geometry = feature_collection.geometry()
#print("feature_collection",feature_collection.getInfo())
dataset = aie.ImageCollection('LANDSAT_LC08_C02_T1_L2') \
             .filterBounds(geometry) \
             .filterDate('2019-08-01', '2019-08-31')\
             .map(getNDVI).mosaic().clip(region)
print("dataset",dataset.getInfo())
result =  dataset.select("NDVI").reduceRegion(aie.Reducer.mean(), region, 30)
print(result)
print(result.getInfo())

结果:

{'NDVI_mean': 0.0190175001}

 

相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
26天前
|
存储 人工智能 文字识别
利用AI能力平台实现档案馆纸质文件的智能化数字处理
在传统档案馆中,纸质文件管理面临诸多挑战。AI能力平台利用OCR技术,通过图像扫描、预处理、边界检测、文字与图片分离、文字识别及结果存储等步骤,实现高效数字化转型,大幅提升档案处理效率和准确性。
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
50 3
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。
|
1月前
|
人工智能 运维 Serverless
【CAP评测有奖】邀您共探 AI 应用开发新趋势,赢取多重好礼!
云应用开发平台 CAP(Cloud Application Platform)是阿里云推出的一站式应用开发和生命周期管理平台。是专为现代开发者打造的一站式解决方案,旨在简化应用开发流程,加速创新步伐。它集成了丰富的 Serverless + AI 应用模板、开源工具链与企业级应用管理功能,让无论是个人还是企业开发者,都能轻松构建云上应用,并实现持续迭代升级。
|
1月前
|
SQL 人工智能 DataWorks
DataWorks:新一代 Data+AI 数据开发与数据治理平台演进
本文介绍了阿里云 DataWorks 在 DA 数智大会 2024 上的最新进展,包括新一代智能数据开发平台 DataWorks Data Studio、全新升级的 DataWorks Copilot 智能助手、数据资产治理、全面云原生转型以及更开放的开发者体验。这些更新旨在提升数据开发和治理的效率,助力企业实现数据价值最大化和智能化转型。
247 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
评测:AI 大模型助力客户对话分析
该评测报告详细介绍了Al大模型在客户对话分析中的应用,涵盖了实践原理、实施方法、部署体验、示例代码及业务适应性。报告指出,该方案利用NLP和机器学习技术,深度解析对话内容,精准识别用户意图,显著提升服务质量与客户体验。实施方法清晰明了,文档详尽,部署体验顺畅,提供了丰富的引导和支持。示例代码实用性强,但在依赖库安装和资源限制方面需注意调整。整体上,该方案能够满足基本对话分析需求,但在特定行业场景中还需进一步定制化开发。
|
1月前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
47 2
|
2月前
|
存储 人工智能 Serverless
AI大模型助力客户对话分析评测文章
在数字化时代,企业面临客户对话数据处理的挑战。阿里云推出的AI大模型助力客户对话分析方案,通过整合多种云服务,实现对话数据的自动化分析,提升服务质量和客户体验。本文将详细介绍该方案的优势与实际应用效果。
|
2月前
|
人工智能 Serverless
参与评测「AI 大模型助力客户对话分析」
本文介绍了作者参与《AI大模型助力客户对话分析》项目的实践与感受,通过阿里云提供的解决方案,从架构设计到具体实施,最终成功部署了AI质检应用,感受到了AI技术的魅力和便捷性。项目分为四步执行,虽然过程中遇到了一些小挑战,但总体上顺利完成了部署,实现了对话记录的质检与分析,有助于提高企业客户的服务效率。