YOLOv5改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)

简介: YOLOv5改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是低照度图像增强网络SCINet,SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。我将该网络集成在YOLOv5的主干上针对于图像的输入进行增强,同时该网络的并不会增加参数和计算量,基本和普通的网络结构保持一致,同时该结构支持自定义调节层数,来控制图像增强的效果 ,非常适合想要在黑夜目标检测领域发表文章的读者,该基本网络不会影响模型的速度。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、SCINet原理

image.png


2.2 SCINet原理

SCINet(自校正照明网络)是一种专为低光照图像增强设计的框架。它通过级联照明学习过程和权重共享机制来处理图像,优化了照明部分以提升图像质量。SCINet引入了自校正模块,用于减少计算负担并提高结果的稳定性。此外,其无监督训练损失功能使得模型能够适应不同场景。SCINet还显示出对简单操作设置的稳定性能适应性,以及可以提升现有照明增强工作性能的普适性。

SCINet的基本原理可以分为以下几个主要部分:

1. 级联照明学习与权重共享: SCINet采用了一个级联的照明学习过程,其中各个阶段共享权重。这种设计旨在优化照明组件,从而提升低光照图像的增强效果。

2. 自校正模块: 为了减少计算负担并提高暴露稳定性,SCINet构建了一个自校正模块。这个模块能够使每个阶段的结果收敛,从而在测试阶段仅需使用单个基础块。

3. 无监督训练损失: 作者定义了一种无监督训练损失来约束自校正模块下每个阶段的输出,使模型能够适应多种场景。

注意:YOLO网络只涉及到“级联照明学习与权重共享”,所以本篇文章着重介绍其级联照明学习与权重共享的相关内容。

2.3 级联照明学习与权重共享

级联照明学习与权重共享是SCINet的核心特性之一,主要包含以下几个方面:

1. 级联过程:在级联照明学习中,模型由多个阶段组成,每个阶段都对输入图像的照明进行估计。这种多阶段的处理方式有助于逐步改善图像亮度,每个阶段都在前一个阶段的基础上进一步提升图像质量。

2. 权重共享:在这些阶段中,模型的参数(权重)是共享的。这意味着,尽管每个阶段都执行相似的任务,但它们使用相同的模型参数来执行这些任务。权重共享可以减少模型的整体参数数量,从而减少了模型的复杂性和过拟合的风险。

3. 自校正模块:在每个阶段之后,一个自校正模块被用来校正当前阶段的输出。这一校正确保了随着级联过程的进行,每个阶段的输出逐渐趋于稳定,并且最终输出的质量不会因为过多的处理步骤而退化。

4. 计算效率:由于使用了权重共享,模型在训练时可以有效地学习如何处理低光照图像。在测试阶段,只需使用单个照明估计模块,这大大简化了模型并提高了推理速度。

5. 性能提升:级联照明学习与权重共享的结合使得模型不仅在处理单一图像时表现出色,也能够适应不同的低光照条件和场景,提升了模型的泛化能力和实际应用价值。

下图为大家展示了SCINet的整体框架,特别是在训练阶段包括照明估计和自校正模块两部分。

image.png

自校正模块的输出被添加到原始的低光照输入中,作为下一阶段照明估计的输入。这两个模块在整个训练过程中共享参数。在测试阶段,仅使用单个照明估计模块。这与SCINet基本原理的第一点和第二点紧密相关,即级联照明学习过程和权重共享以及自校正模块的设计来减少计算负担并提高结果的稳定性。

目录
相关文章
|
4月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
164 3
RT-DETR改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
22天前
|
算法 PyTorch 算法框架/工具
PyTorch 实现FCN网络用于图像语义分割
本文详细讲解了在昇腾平台上使用PyTorch实现FCN(Fully Convolutional Networks)网络在VOC2012数据集上的训练过程。内容涵盖FCN的创新点分析、网络架构解析、代码实现以及端到端训练流程。重点包括全卷积结构替换全连接层、多尺度特征融合、跳跃连接和反卷积操作等技术细节。通过定义VOCSegDataset类处理数据集,构建FCN8s模型并完成训练与测试。实验结果展示了模型在图像分割任务中的应用效果,同时提供了内存使用优化的参考。
|
3月前
|
机器学习/深度学习 数据采集 编解码
基于DeepSeek的生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)通过生成器和判别器的对抗训练,生成高质量的合成数据,在图像生成等领域展现巨大潜力。DeepSeek作为高效深度学习框架,提供便捷API支持GAN快速实现和优化。本文详细介绍基于DeepSeek的GAN技术,涵盖基本原理、实现步骤及代码示例,展示其在图像生成中的应用,并探讨优化与改进方法,如WGAN、CGAN等,解决模式崩溃、训练不稳定等问题。最后,总结GAN在艺术创作、数据增强、图像修复等场景的应用前景。
432 16
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
189 9
YOLOv11改进策略【Neck】| ASF-YOLO 注意力尺度序列融合模块改进颈部网络,提高小目标检测精度
|
7月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
181 3
|
7月前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
88 0
|
7月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
159 17
|
6月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
123 10

热门文章

最新文章