YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

简介: YOLOv8改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

一、本文介绍

本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了UniRepLknet各种视觉任务中,包括图像分类、目标检测和语义分割,都显示出优异的性能。

欢迎大家订阅我的专栏一起学习YOLO!

image.png

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、 UniRepLknet的框架原理

image.png

UniRepLKNet论文提出了一种新型的大核心卷积神经网络架构。这种架构通过结合非扩张小核心和扩张小核心层来增强非扩张大核心卷积层,旨在优化空间模式层次和表示能力。它强调了根据下游任务选择核心大小的重要性,并展示了该架构在图像识别以外领域(如音频、视频和时间序列数据)的通用性。此外,论文还展示了在各种任务上的领先性能,证明了其多功能性和高效性。

UniRepLKNet的主要创新点包括:

UniRepLKNet的结构上的创新点主要体现在其大核心卷积神经网络的设计上,这包括对大核心的高效利用,以及与传统ConvNets和变换器相比的独特构造。这种架构通过融合非扩张小核心和扩张小核心层来增强大核心层,优化了空间模式层次和网络的表示能力。此外,论文还提出了适用于大核心ConvNets的四个架构设计原则,旨在充分发挥大核心的独特优势,例如通过浅层结构观察更广阔视野,而不需要深入网络层次。

image.png

在图像中展示的UniRepLKNet架构设计中,一个显著的结构创新是LaRK(Large Kernel)块,它包括本文提出的Dilated Reparam Block,一个SE(Squeeze-and-Excitation)块,前馈网络(FFN),以及批量归一化(BN)层。LaRK块与SmaK(Small Kernel)块的主要区别在于,LaRK使用深度分离的3x3卷积层代替了Dilated Reparam Block中的层。不同阶段的块通过步长为2的密集3x3卷积层实现的下采样块连接,而这些块可以在不同阶段灵活地排列。这种设计强调了结构的模块化和灵活性,以及通过大核心来增强模型的性能和效率。


image.png

在图2中,UniRepLKNet的Dilated Reparam Block通过使用扩张的小核心卷积层来增强非扩张的大核心层。这些扩张层从参数角度看等同于一个具有更大稀疏核心的非扩张卷积层,这使得整个块可以等效地转换成单个大核心卷积。通过重新参数化的过程,多个具有不同扩张率的小核心卷积层被合并成一个等效的大核心卷积层,从而在保持可学习参数数量和计算效率的同时,增强了网络对空间信息的捕获能力。这种设计创新为ConvNets提供了更广泛的感受野,而不会增加模型的深度。

目录
相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
5月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
2月前
|
算法 计算机视觉 Python
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
本文介绍了如何将ATSS标签分配策略融合到YOLOv8中,以提升目标检测网络的性能。通过修改损失文件、创建ATSS模块文件和调整训练代码,实现了网络的快速涨点。ATSS通过自动选择正负样本,避免了人工设定阈值,提高了模型效率。文章还提供了遇到问题的解决方案,如模块载入和环境配置问题。
148 0
YOLOv8优改系列二:YOLOv8融合ATSS标签分配策略,实现网络快速涨点
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
287 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
1月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
2月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
该专栏专注于YOLOv8的 Neck 部分改进,融合了 BiFPN 网络,大幅提升检测性能。BiFPN 通过高效的双向跨尺度连接和加权特征融合,解决了传统 FPN 的单向信息流限制。文章详细介绍了 BiFPN 的原理及其实现方法,并提供了核心代码修改指导。点击链接订阅专栏,每周定时更新,助您快速提升模型效果。推荐指数:⭐️⭐️⭐️⭐️,涨点指数:⭐️⭐️⭐️⭐️。
221 0
|
5月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
13天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
54 17
|
23天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
24天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
45 10

热门文章

最新文章