YOLOv5改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)

简介: YOLOv5改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)

一、本文介绍

本文给大家带来的改进机制是HAttention注意力机制,混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的结果(这个注意力机制挺复杂的光代码就700+行),但是效果挺好的也是10月份最新的成果非常适合添加到大家自己的论文中。

image.png

推荐指数:⭐⭐⭐⭐⭐(最新的改进机制)

专栏回顾:YOLOv5改进专栏——持续复现各种顶会内容——内含100+创新

二、HAttention框架原理

image.png

这篇论文提出了一种新的混合注意力变换器(Hybrid Attention Transformer, HAT)用于单图像超分辨率重建。HAT结合了通道注意力和自注意力,以激活更多像素以进行高分辨率重建。此外,作者还提出了一个重叠交叉注意模块来增强跨窗口信息的交互。论文还引入了一种同任务预训练策略,以进一步发掘HAT的潜力。通过广泛的实验,论文展示了所提出模块和预训练策略的有效性,其方法在定量和定性方面显著优于现有的最先进方法。

这篇论文的创新点主要包括:

1. 混合注意力变换器(HAT)的引入:它结合了通道注意力和自注意力机制,以改善单图像超分辨率重建。

2.重叠交叉注意模块:这一模块用于增强跨窗口信息的交互,以进一步提升超分辨率重建的性能。

3.同任务预训练策略:作者提出了一种新的预训练方法,专门针对HAT,以充分利用其潜力。

这些创新点使得所提出的方法在超分辨率重建方面的性能显著优于现有技术。

image.png

这个图表展示了所提出的混合注意力变换器(HAT)在不同放大倍数(x2, x3, x4)和不同数据集(Urban100和Manga109)上的性能对比。HAT模型与其他最先进模型,如SwinIR和EDT进行了比较。图表显示,HAT在PSNR(峰值信噪比)度量上,比SwinIR和EDT有显著提升。特别是在Urban100数据集上,HAT的改进幅度介于0.3dB到1.2dB之间。HAT-L是HAT的一个更大的变体,它在所有测试中都表现得非常好,进一步证明了HAT模型的有效性。

image.png

这幅图描绘了混合注意力变换器(HAT)的整体架构及其关键组成部分的结构。HAT包括浅层特征提取,深层特征提取,以及图像重建三个主要步骤。在深层特征提取部分,有多个残差混合注意力组(RHAG),每个组内包含多个混合注意力块(HAB)和一个重叠交叉注意块(OCAB)。HAB利用通道注意力块(CAB)和窗口式多头自注意力(W-MSA),在提取特征时考虑了通道之间和空间位置之间的相关性。OCAB进一步增强了不同窗口间特征的交互。最后,经过多个RHAG处理的特征通过图像重建部分,恢复成高分辨率的图像(这个在代码中均有体现,这个注意力机制代码巨长,700多行)。

2.1 混合注意力变换器(HAT)

混合注意力变换器(HAT)的设计理念是通过融合通道注意力和自注意力机制来提升单图像超分辨率重建的性能。通道注意力关注于识别哪些通道更重要,而自注意力则关注于图像内部各个位置之间的关系。HAT利用这两种注意力机制,有效地整合了全局的像素信息,从而提供更为精确的上采样结果。这种结合使得HAT能够更好地重建高频细节,提高重建图像的质量和精度。

image.png

这幅图表展示了不同超分辨率网络的局部归因图(LAM)结果,以及对应的性能指标。LAM展示了在重建高分辨率(HR)图像中标记框内区域时,输入的低分辨率(LR)图像中每个像素的重要性。扩散指数(DI)表示参与的像素范围,数值越高表示使用的像素越多。结果表明,HAT(作者的模型)在重建时使用了最多的像素,相比于EDSR、RCAN和SwinIR,HAT显示了最强的像素利用和最高的PSNR/SSIM性能指标。这表明HAT在精细化重建细节方面具有优势。

目录
相关文章
|
3月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
987 0
|
8月前
|
计算机视觉
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
411 1
|
6月前
|
机器学习/深度学习 编解码 人工智能
一种基于YOLOv8改进的高精度表面缺陷检测网络, NEU-DET和GC10-DET涨点明显(原创自研)
【7月更文挑战第3天】一种基于YOLOv8改进的高精度表面缺陷检测, 在NEU-DET和GC10-DET任务中涨点明显;
190 1
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
815 0
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测
【保姆级教程|YOLOv8改进】【6】快速涨点,SPD-Conv助力低分辨率与小目标检测
|
8月前
|
计算机视觉
YOLOv5改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)
YOLOv5改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)
291 3
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)
YOLOv8改进 | 主干篇 | 低照度图像增强网络SCINet改进黑暗目标检测(全网独家首发)
450 2
|
8月前
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
430 2
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
YOLOv8改进 | 融合改进篇 | CCFM + Dyhead完美融合突破极限涨点 (全网独家首发)
444 2
|
8月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
YOLOv8改进 | 2023注意力篇 | HAttention(HAT)超分辨率重建助力小目标检测 (全网首发)
319 0