YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)

简介: YOLOv8改进 | 检测头篇 | ASFF改进YOLOv8检测头(全网首发)

一、本文介绍

本文给大家带来的改进机制是利用ASFF改进YOLOv8的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推荐大家使用。

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备


二、ASFF的基本框架原理


image.png

ASFF(自适应空间特征融合)方法针对单次对象检测任务提出,解决了不同特征尺度间的一致性问题。其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。研究表明,将ASFF应用于YOLOv3可以显著提高在MS COCO数据集上的检测性能,实现了速度与准确性的平衡。ASFF方法可以通过反向传播进行训练,与模型无关,并且引入的计算开销很小,使其成为现有对象检测框架的一种实用增强。

ASFF的创新点主要包括:

1. 自适应空间特征融合:提出了一种新的金字塔特征融合策略,能够空间过滤冲突信息,压制不同尺度特征间的不一致性。

2. 改善尺度不变性:通过ASFF策略,显著提升了特征的尺度不变性,有助于提高对象检测的准确性。

3. 低推理开销:在提升检测性能的同时,几乎不增加额外的推理开销。

这些创新使ASFF成为单次对象检测领域的一个重要进展,特别是对处理不同尺度对象的能力的提升,所以将其对于一些单一尺度检测的Neck适合是不适用的大家需要注意这一点

image.png

这张图片展示了自适应空间特征融合(ASFF)机制的工作原理,它是用于单次对象检测的。在这种结构中,不同层级的特征(表示为不同颜色的层)首先通过各自的步幅(stride)进行下采样或上采样,以便所有特征具有相同的空间维度。

- Level 1、Level 2和Level 3指的是特征金字塔中不同层级的特征,每个层级都有不同的空间分辨率。

- ASFF-1、ASFF-2和ASFF-3表示应用了ASFF机制的不同层级的特征融合。

- 在ASFF-3的放大部分,我们可以看到来自其他层级的特征(x1→3、x2→3)被调整到与第三层(x3→3)相同的尺寸,然后它们通过学习到的权重图进行加权融合,生成最终用于预测的融合特征(

image.png

)。

通过这种方式,ASFF能够在每个空间位置自适应地选择最有用的特征,以提高检测的准确性。这种方法允许模型根据每个特定位置和尺度的上下文,灵活地决定哪些特征层级对最终预测最为重要。

目录
相关文章
|
机器学习/深度学习 Go 计算机视觉
YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)
YOLOv8改进 | Neck篇 | 利用ASF-YOLO改进特征融合层(适用于分割和目标检测)
917 1
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7205 1
|
机器学习/深度学习 编解码 文件存储
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
YOLOv8改进 | 2023Neck篇 | BiFPN双向特征金字塔网络(附yaml文件+代码)
1387 0
|
8月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
1003 13
YOLOv11改进策略【Head】| ASFF 自适应空间特征融合模块,改进检测头Detect_ASFF
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | Head | 将yolov5的检测头替换为ASFF_Detect
本文介绍了为解决目标检测中尺度变化问题而提出的自适应空间特征融合(ASFF)技术。ASFF通过动态调整不同尺度特征的贡献,增强特征一致性,提高检测器性能,尤其适用于多尺度目标检测。文章提供了ASFF的基本原理和实现步骤,并详细说明如何将ASFF集成到YOLOv5的检测头中,提供了相关代码片段。此外,还分享了完整的实现教程链接,便于读者实践学习。
|
12月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
1696 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
机器学习/深度学习 编解码 PyTorch
CVPR 2023 | 主干网络FasterNet 核心解读 代码分析
本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。
9738 58
|
12月前
|
机器学习/深度学习 算法 PyTorch
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
这篇文章详细介绍了多种用于目标检测任务中的边界框回归损失函数,包括IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU和WIOU,并提供了它们的Pytorch实现代码。
2210 1
深度学习笔记(十三):IOU、GIOU、DIOU、CIOU、EIOU、Focal EIOU、alpha IOU、SIOU、WIOU损失函数分析及Pytorch实现
|
机器学习/深度学习 自然语言处理 计算机视觉
YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)
YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)
822 0
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。