YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)

简介: YOLOv8改进 | 2023 | 给YOLOv8换个RT-DETR的检测头(重塑目标检测前沿技术)

一、本文介绍

本文给大家带来是用最新的RT-DETR模型的检测头去替换YOLOv8中的检测头。RT-DETR号称是打败YOLO的检测模型,其作为一种基于Transformer的检测方法,相较于传统的基于卷积的检测方法,提供了更为全面和深入的特征理解,将RT-DETR检测头融入YOLOv8,我们可以结合YOLO的实时检测能力和RT-DETR的深度特征理解能力,打造出一个更加强大的目标检测模型。亲测这一整合不仅提高了模型在复杂场景下的表现,还显著提升了对小目标和遮挡目标的检测能力。此外,模型在多种标准数据集上的表现也有了明显提升,特别是在处理高动态范围和复杂背景的图像时,其表现尤为出色。

image.png

适用检测目标:需要注意的是本文的改进并不一定适合所有的数据集可能只有在部分的数据集有效(听人反馈部分的数据集可能掉点)。

推荐指数:⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、RT-DETR检测头框架原理

image.png

2.1 RT-DETR的基本原理

RT-DETR系统中的检测头变换器解码器(transformer decoder)部分,包括辅助预测头,是该系统的核心组成之一。变换器解码器在RT-DETR中扮演了重要角色,主要负责处理经过混合编码器加工后的特征,并对这些特征进行目标检测。这一部分的设计是基于Transformer架构的,该架构已在自然语言处理领域取得了巨大成功,并在最近几年逐渐被应用于计算机视觉任务中。

在RT-DETR中,变换器解码器利用Transformer的强大能力来捕捉和理解图像中的复杂模式。它通过自注意力机制来分析和加权输入特征,从而能够更准确地定位和识别图像中的不同对象。这种方法使RT-DETR能够在保持高速度的同时,提供比传统方法更精准的检测结果。

image.png

辅助预测头则是变换器解码器的一个关键组件,它被用来进一步提升模型的检测性能。这些预测头直接作用于解码器的输出,负责生成最终的检测结果,包括对象的类别、位置和大小等信息。通过这种设计,RT-DETR能够在端到端的框架内完成整个目标检测流程,无需依赖于传统的基于锚点的方法或复杂的后处理步骤,这大大简化了检测流程并提高了效率。

RT-DETR网络详解:详解RT-DETR网络结构/数据集获取/环境搭建/训练/推理/验证/导出/部署

目录
相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7179 1
|
机器学习/深度学习 编解码 计算机视觉
YOLOv8改进 | 主干篇 | SwinTransformer替换Backbone(附代码 + 详细修改步骤 +原理介绍)
YOLOv8改进 | 主干篇 | SwinTransformer替换Backbone(附代码 + 详细修改步骤 +原理介绍)
1351 0
|
7月前
|
编解码 计算机视觉
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
RT-DETR改进策略【Head】| 增加针对 大目标 的检测层 (四个检测头)
291 16
|
机器学习/深度学习 人工智能 自然语言处理
RT-DETR原理与简介(干翻YOLO的最新目标检测项目)
RT-DETR原理与简介(干翻YOLO的最新目标检测项目)
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
1301 0
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
机器学习/深度学习 计算机视觉
YOLOv10实战:红外小目标实战 | 多头检测器提升小目标检测精度
本文改进: 在进行目标检测时,小目标会出现漏检或检测效果不佳等问题。YOLOv10有3个检测头,能够多尺度对目标进行检测,但对微小目标检测可能存在检测能力不佳的现象,因此添加一个微小物体的检测头,能够大量涨点,map提升明显; 多头检测器提升小目标检测精度,1)mAP50从0.666提升至0.677
1700 3
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | Head | 将yolov5的检测头替换为ASFF_Detect
本文介绍了为解决目标检测中尺度变化问题而提出的自适应空间特征融合(ASFF)技术。ASFF通过动态调整不同尺度特征的贡献,增强特征一致性,提高检测器性能,尤其适用于多尺度目标检测。文章提供了ASFF的基本原理和实现步骤,并详细说明如何将ASFF集成到YOLOv5的检测头中,提供了相关代码片段。此外,还分享了完整的实现教程链接,便于读者实践学习。
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)
YOLOv8打印模型结构配置信息并查看网络模型详细参数:参数量、计算量(GFLOPS)