YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)

简介: YOLOv8改进 | 2023注意力篇 | MSDA多尺度空洞注意力(附多位置添加教程)

一、本文介绍

本文给大家带来的改进机制是MSDA(多尺度空洞注意力)发表于今年的中科院一区(算是国内计算机领域的最高期刊了),其全称是"DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition"。MSDA的主要思想是通过线性投影得到特征图X的相应查询、键和值。然后,将特征图的通道分成n个不同的头部,并在不同的头部中以不同的扩张率执行多尺度SWDA来提高模型的处理效率和检测精度。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果(mAP直接涨了大概有0.06左右)。最后本文会手把手教你添加MSDA模块到网络结构中。

image.png

推荐指数:⭐⭐⭐⭐⭐

涨点效果:⭐⭐⭐⭐⭐


二、MSDA框架原理

image.png

在DilateFormer论文中,多尺度扩张注意力(MSDA)模块是为了利用自注意机制在不同尺度上的稀疏性。MSDA通过线性投影得到特征图X的相应查询、键和值。然后,将特征图的通道分成n个不同的头部,并在不同的头部中以不同的扩张率执行多尺度SWDA。具体来说,MSDA被公式化如下:对于每个头部i,进行SWDA操作,并且对所有的输出进行连接后送入一个线性层进行特征聚合。通过为不同的头部设置不同的扩张率,MSDA能够在被关注的接受域内有效地聚合不同尺度的语义信息,并在不需要复杂操作和额外计算成本的情况下有效地减少自注意机制的冗余

MSDA(多尺度扩张注意力)模块的主要改进机制包括以下几点:

1. 多尺度特征提取:通过不同头部的自注意力机制,MSDA能够捕捉到多尺度的语义信息,这对于理解图像的不同抽象层次是非常重要的。

2. 稀疏性利用:MSDA利用了自注意力机制在不同尺度的稀疏性,降低了计算的冗余,同时保持了性能。

3. 头部通道分离:MSDA将特征图的通道分离成多个头部,每个头部处理不同的特征子集,这样可以并行处理,增强了模型的学习能力和效率。

4. 不同的扩张率:通过在不同头部设置不同的扩张率,MSDA能够在各个头部关注不同尺度的特征,从而能更加全面地捕捉图像中的信息。

5. 特征聚合:MSDA的输出通过连接操作合并,并通过线性层进行特征聚合,这样可以整合各个头部学习到的信息,得到更丰富的特征表示。

这些改进使得MSDA在不增加额外计算成本的情况下,提高了自注意力机制的效率和效果。

image.png

这幅图展示了ViT-Small的第三个多头自注意力(Multi-Head Self-Attention, MHSA)块的注意力图的可视化。在每张图中,一个特定的查询块(红色框内的区域)被用来展示其它各个块对它的注意力程度。注意力图显示了具有高注意力得分的块在查询块周围稀疏分布,而其它块的注意力得分较低。

image.png

这张图展示了多尺度扩张注意力(MSDA)的工作原理。在MSDA中,特征图的通道首先被分割成不同的头部,然后每个头部内部使用不同的扩张率(dilation rates)r来执行自注意力操作。这些操作在围绕红色查询块的窗口内的彩色块之间进行。

图中的例子展示了三种不同的扩张率(r=1, 2, 3)(这里需要注意的是咱们我的网络中需要改成四种的扩张率),它们分别对应不同的感受野大小(3x3, 5x5, 7x7)。每个头部的自注意力操作针对的是其对应的扩张率和感受野。这样,模型能够在不同的尺度上捕捉图像特征,这些特征随后被连接在一起,并送入一个线性层进行特征聚合。

这种设计允许模型在不同的尺度上理解图像,从而提高对图像内容的整体理解。通过这种方法,MSDA不仅可以捕捉局部细节,也能够感知到更广泛区域的上下文信息,增强了模型的表现力。

目录
相关文章
|
6月前
|
机器学习/深度学习 Ruby
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
689 0
|
6月前
|
机器学习/深度学习 Ruby
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)
339 0
|
机器学习/深度学习 人工智能 自然语言处理
视觉 注意力机制——通道注意力、空间注意力、自注意力
本文介绍注意力机制的概念和基本原理,并站在计算机视觉CV角度,进一步介绍通道注意力、空间注意力、混合注意力、自注意力等。
4538 0
|
1月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
267 0
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-卷积Conv】RFAConv:感受野注意力卷积,创新空间注意力
【YOLO目标检测专栏】探索空间注意力局限,提出感受野注意力(RFA)机制,解决卷积核参数共享问题。RFAConv增强大尺寸卷积核处理能力,不增加计算成本,提升网络性能。已在YOLOv8中实现,详情见YOLO目标检测创新改进与实战案例专栏。
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv10改进-注意力机制】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了ViT的改进,提出DilateFormer,它结合多尺度扩张注意力(MSDA)来平衡计算效率和关注域大小。MSDA利用局部稀疏交互减少冗余,通过不同头部的扩张率捕获多尺度特征。DilateFormer在保持高性能的同时,计算成本降低70%,在ImageNet-1K、COCO和ADE20K任务上取得领先结果。YOLOv8引入了MultiDilatelocalAttention模块,用于实现膨胀注意力。更多详情及配置见相关链接。
|
4月前
|
机器学习/深度学习 测试技术 网络架构
【YOLOv10改进-注意力机制】MSCAAttention多尺度卷积注意力
YOLOv10专栏介绍了一种新的卷积网络架构SegNeXt,它在语义分割任务中展现出优于Transformer模型的效率和效果。SegNeXt通过名为Multi-Scale Convolutional Attention (MSCA)的组件,结合局部信息聚合、多尺度上下文捕获和通道关系模拟,提升了性能。在多个数据集上,SegNeXt以较少参数实现了超过现有SOTA的性能,特别是在Pascal VOC 2012上,以1/10的参数量达到90.6%的mIoU。YOLOv10引入了MSCA模块,用于增强目标检测的上下文关注。相关代码和配置详情可在链接中找到。
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
YOLOv8改进 | 2023注意力篇 | EMAttention注意力机制(附多个可添加位置)
893 0
|
4月前
|
机器学习/深度学习 移动开发 资源调度
【YOLOv8改进 - 注意力机制】S2Attention : 整合空间位移和分割注意力
YOLOv8专栏探讨了MLP主干网络的创新,如S2-MLPv2,它通过通道扩展和分块空间移位提高性能,达到83.6%的ImageNet top-1准确率。文章介绍了分割注意力模块,用于融合特征图。提供了S2Attention类的代码示例,展示如何结合空间位移和分割注意力。详细内容和实战案例可在[CSDN博客](https://blog.csdn.net/shangyanaf)找到。
|
6月前
|
计算机视觉
【YOLOv8改进】 MSDA:多尺度空洞注意力 (论文笔记+引入代码)
该文介绍了DilateFormer,一种新提出的视觉变换器,它在计算效率和关注接受域之间取得平衡。通过分析ViTs,发现浅层的局部性和稀疏性,提出了多尺度扩张注意力(MSDA),用于局部、稀疏的块交互。DilateFormer结合MSDA块和全局多头自注意力块,形成金字塔架构,实现各视觉任务的顶尖性能。与现有最佳模型相比,在ImageNet-1K分类任务上,DilateFormer性能相当但计算成本降低70%,同时在COCO检测/分割和ADE20K语义分割任务上表现优秀。文章还展示了MSDA的创新点,包括多尺度聚合、局部稀疏交互和减少自注意力冗余。此外,