常用的Negative prompt用语-测试模型(Stable-Diffusion)

简介: 常用的Negative prompt用语-测试模型(Stable-Diffusion)

什么是negative prompt?

与正常的文本到图像 prompt 类似,Negative Prompting 表示你不希望在结果图像中看到的术语。这个强大的功能允许用户从原始生成的图像中删除任何对象、样式或异常。尽管 Stable Diffusion 以人类语言的形式接受被称为 prompt 的输入,但它很难理解否定词,如「no, not, except, without」等。因此,用户需要使用 negative prompting 来完全控制 prompt。

测试prompt

The programmer is 35 years old, energetic, handsome, healthy, smart and alert, wearing a suit and light blue shirt.

中文翻译:程序员 35岁 有活力 帅气 健康 耳聪目明 双眼有神 穿西服 浅蓝色衬衫。

Negative prompt常用单词1(建议使用)

使用的时候不用整体使用,看看自己生成的内容进行添加即可。

(semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, pgly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck

中文:

(半写实、cgi、3d、渲染、草图、卡通、绘画、动漫:1.4)、文本、特写、裁剪、出框、最差质量、低质量、jpeg 伪影、pgly、重复、病态、残缺、额外的手指、变异的手、画得不好的手、画得不好的脸、突变、变形、模糊、脱水、不良的解剖结构、不良的比例、额外的肢体、克隆的脸、毁容、总体比例、畸形的四肢、缺失的手臂、缺失的腿、额外的手臂、多余的腿、融合的手指、太多的手指、长脖子

出图测试:

Negative prompt常用到的单词2

bad anatomy, bad proportions, blurry, cloned face, deformed, disfigured, duplicate, extra arms, extra fingers, extra limbs, extra legs, fused fingers, gross proportions, long neck, malformed limbs, missing arms, missing legs, mutated hands, mutation, mutilated, morbid, out of frame, poorly drawn hands, poorly drawn face, too many fingers, ugly, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, out of frame, ugly, extra limbs, bad anatomy, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, mutated hands, fused fingers, too many fingers, long neck

中文翻译:

不良的解剖结构,不良的比例,模糊,克隆脸,变形,毁容,重复,额外的手臂,额外的手指,额外的肢体,额外的腿,融合的手指,总比例,长脖子,畸形的四肢,缺失的手臂,缺失的腿,变异的手,突变、残缺不全、病态、出框、画得不好的手、画得不好的脸、太多手指、丑陋、丑陋、重复、病态、残缺不全、出框、额外的手指、突变的手、画得不好的手、画得不好的脸、突变、变形、丑陋、模糊、不良解剖结构、不良比例、额外肢体、克隆脸、毁容、出框、丑陋、额外肢体、不良解剖结构、总比例、畸形四肢、缺失手臂、缺失腿、额外手臂、额外腿、变异的手、融合的手指、太多的手指、长脖子

出图测试:

总结:

Negative prompt的出现是非常大的一个进步,可以让我们生成图片的时候加强约束,再也不用因为微瑕的图片而调整无数次了。

相关文章
|
28天前
|
人工智能 搜索推荐 测试技术
模拟试错(STE)法让7B大模型测试超GPT-4
【2月更文挑战第24天】模拟试错(STE)法让7B大模型测试超GPT-4
23 1
模拟试错(STE)法让7B大模型测试超GPT-4
|
19天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
1月前
|
测试技术
模型驱动测试:引领软件质量的新潮流
模型驱动测试:引领软件质量的新潮流
21 2
|
4月前
|
分布式计算 测试技术 Spark
通过Langchain实现大模型完成测试用例生成的代码(可集成到各种测试平台)
通过Langchain实现大模型完成测试用例生成的代码(可集成到各种测试平台)
589 0
|
3月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
184 0
|
5月前
|
机器学习/深度学习 人工智能 数据可视化
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
【网安AIGC专题10.19】论文4:大模型(CODEX 、CodeGen 、INCODER )+自动生成代码评估:改进自动化测试方法、创建测试输入生成器、探索新的评估数据集扩充方法
266 1
|
1月前
|
测试技术
模型驱动测试引领测试开发新风向
模型驱动测试引领测试开发新风向
16 3
|
2月前
|
存储 人工智能 自然语言处理
选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试
OpenAI最近发布了他们的新一代嵌入模型*embedding v3*,他们将其描述为性能最好的嵌入模型,具有更高的多语言性能。这些模型分为两类:较小的称为text- embeddings -3-small,较大且功能更强大的称为text- embeddings -3-large。
79 0
|
2月前
|
运维 数据可视化 测试技术
Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试
2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。 虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。
90 2

热门文章

最新文章