【办公自动化】在Excel中按条件筛选数据并存入新的表

简介: 【办公自动化】在Excel中按条件筛选数据并存入新的表

一、Python处理Excel


  • Python处理Excel的好处


  1. 开源库支持:Python 有许多开源库(例如 openpyxl、xlrd、xlwt、pandas 等)可以用于读取、写入和操作 Excel 文件,这些库丰富而强大,支持各种 Excel 格式,包括 .xls 和 .xlsx。


  1. 数据处理能力:Python 具有强大的数据处理能力,可以轻松地从 Excel 文件中提取、转换和操作数据,包括数据清洗、筛选、合并、计算和可视化。


  1. 自动化:Python 可以用于自动化 Excel 任务,例如批量处理多个 Excel 文件,根据特定条件过滤和修改数据,自动生成报告和图表,以及自动发送电子邮件等。


  1. 与其他库集成:Python 可以与其他数据处理和分析库(如 NumPy、pandas、Matplotlib 等)无缝集成,使您能够在 Excel 数据上执行更复杂的分析和可视化。


  1. 跨平台性:Python 是跨平台的,可以在 Windows、Mac 和 Linux 等操作系统上运行,因此可以轻松地处理来自不同平台的 Excel 文件。


  1. 社区支持和文档:Python 社区非常庞大,有大量的文档、教程和示例代码可供学习和参考,帮助您解决与 Excel 处理相关的问题。


  1. 可扩展性:如果标准库中的功能不足以满足您的需求,您还可以使用其他第三方库来扩展 Python 的 Excel 处理功能,或者编写自定义脚本来执行特定的操作。


  • Python处理Excel主要有三大类库


  1. openpyxl:


优势:openpyxl 是一个功能丰富的库,用于读取、写入和编辑 Excel 文件,特别适用于处理 .xlsx 格式的文件。它支持大多数 Excel 功能,包括工作表的创建、修改、格式化,单元格内容的读取和写入,以及图表的创建。

适用场景:如果您需要与 Excel 2007及更高版本的 .xlsx 文件进行交互,openpyxl 是一个很好的选择。


  1. xlrd 和 xlwt:


xlrd 用于读取 Excel 文件,而 xlwt 用于创建和写入 Excel 文件,主要支持 .xls 格式。

优势:虽然这两个库在处理 .xlsx 文件方面不如 openpyxl 强大,但它们在处理早期版本的 Excel 文件(.xls 格式)方面非常有用,而且它们简单易用。

适用场景:当您需要与较早版本的 Excel 文件进行交互时,或者需要在读取和写入操作中保持兼容性时,可以考虑使用这些库。


  1. pandas:


优势:pandas 是一个强大的数据分析库,可以轻松地处理各种数据,包括从 Excel 文件中读取数据。它可以读取和写入 Excel 文件,支持 .xls 和 .xlsx 格式,并提供了丰富的数据处理和分析功能。

适用场景:pandas 特别适合在数据分析、数据清洗、数据转换和数据可视化等任务中处理 Excel 数据。它使得在 Python 中进行复杂的数据操作变得容易。


  • 开发环境


操作系统:使用windows


Python版本:系统中需要安装Python3.8以上的版本


开发工具:选择 jupyter notebook


二、在Excel中按条件筛选数据并存入新的表


技术工具:


Python版本:3.9


代码编辑器:jupyter notebook


  老板想要看去年每月领料数量大于1000的数据。手动筛选并复制粘贴出来,需要重复操作12次,实在太麻烦了,还是让Python来做吧。磨刀不误砍柴工,先整理一下思路:


1. 读取原表,将数量大于1000的数据所对应的行整行提取(如同在excel表中按数字筛选大于1000的)

2. 将提取的数据写入新的Excel表

#1.获取满足条件的数据
from openpyxl import load_workbook
wb = load_workbook("每月物料表.xlsx")
data = {} #储存所有工作表中满足条件的数据,以工作表名称为键
sheet_names = wb.sheetnames
for sheet_name in sheet_names:
    ws = wb[sheet_name]
    qty_list = []
    #获取G列的数据,并用enumrate给其对应的元素编号
    for row in range(2,ws.max_row+1):
        qty = ws['G'+str(row)].value
        qty_list.append(qty)
    qty_idx = list(enumerate(qty_list)) #用于编号
    #判断数据是否大于1000,然后返回大于1000的数据所对应的行数
    row_idx = [] #用于储存数量大于1000所对应的的行号
    for i in range(len(qty_idx)):
        if qty_idx[i][1] > 1000:
            row_idx.append(qty_idx[i][0]+2)
    #获取满足条件的数据        
    data_morethan1K = []
    for i in row_idx:
        data_morethan1K.append(ws['A'+str(i)+":"+'I'+str(i)])
    data[sheet_name]=data_morethan1K 


   以上,我们把满足条件的12个月的数据提取并存入字典`data`,其键为对应的月份,比如“1月”,值就是满足条件的各行的数据。我们把“每月物料表”的G列对应的数据提取,存入列表`qty_list`,其中前10个数据是如下这样的。

qty_list[:10]


 然后需要使用`enumerate`函数给这个列表的数据加上索引,以便在跟1000比大小的时候定位满足条件的那些数据的对应在Excel表中的行数。加上索引之后的列表是如下这样的,索引从0开始累加。

qty_idx[:10]


然后,再新建一个列表`row_idx`,用于储存“领料数量”大于1000的数据所对应的行号。此处用到`if`语句进行判断,只将“领料数量”大于1000的数据所对应的行号加上2存入列表。为什么要加2,是因为`range`函数是从0开始取的,然后工作表首行是字段名,第二行开始才是数据。如下结果显示了满足条件的数据对应的行数。  

row_idx[:5]


        然后新建列表`data_morethan1K`用于存储以上行号对应的整行数据。比如`ws['A1:I1']`就指第一行从A列到I列的所有单元格数据。最后将数据存入`data`字典中。数据结构如下所示。

data_morethan1K[1]

data['1月']

len(data['1月'])

data['1月'][0][0][1].value


数据提取完成后,就可以开始写入数据了。打开模板,按月从`data`字典中提取数据。并根据数据结构找到层级关系,将其中的各行的数据写入各单元格。写完之后,设置一下字号、边框即对齐方式,保存数据。到此收工!

#2.写入获取的数据
from openpyxl.styles import Border, Side, PatternFill, Font, GradientFill, Alignment
thin = Side(border_style="thin", color="000000")#定义边框粗细及颜色
wb = load_workbook("模板.xlsx")
ws = wb.active
for month in data.keys():
    ws_new = wb.copy_worksheet(ws) #复制模板中的工作表
    ws_new.title=month 
    #将每个月的数据条数逐个取出并写入新的工作表
    for i in range(len(data[month])): #按数据行数计数,每行数据对应9列,所以每行需分别写入9个单元格
        ws_new.cell(row=i+2,column=1).value=data[month][i][0][0].value
        ws_new.cell(row=i+2,column=2).value=data[month][i][0][1].value
        ws_new.cell(row=i+2,column=3).value=data[month][i][0][2].value
        ws_new.cell(row=i+2,column=4).value=data[month][i][0][3].value.date()
        ws_new.cell(row=i+2,column=5).value=data[month][i][0][4].value
        ws_new.cell(row=i+2,column=6).value=data[month][i][0][5].value
        ws_new.cell(row=i+2,column=7).value=data[month][i][0][6].value
        ws_new.cell(row=i+2,column=8).value=data[month][i][0][7].value
        ws_new.cell(row=i+2,column=9).value=data[month][i][0][8].value
    #设置字号,对齐,缩小字体填充,加边框
    #Font(bold=True)可加粗字体
    for row_number in range(2, ws_new.max_row+1):
        for col_number in range(1,10):
            c = ws_new.cell(row=row_number,column=col_number)
            c.font = Font(size=10)
            c.border = Border(top=thin, left=thin, right=thin, bottom=thin)
            c.alignment = Alignment(horizontal="left", vertical="center",shrink_to_fit = True)
wb.save("每月(大于1K).xlsx")

华丽的结果如下:


三、往期推荐


Python提取pdf中的表格数据(附实战案例)

使用Python自动发送邮件

Python操作ppt和pdf基础

Python操作word基础

Python操作excel基础

使用Python一键提取PDF中的表格到Excel

使用Python批量生成PPT版荣誉证书

使用Python批量处理Excel文件并转为csv文件

目录
相关文章
|
2月前
|
Python
Python办公自动化:删除任意页数pdf页面
Python办公自动化:删除任意页数pdf页面
77 1
Python办公自动化:删除任意页数pdf页面
|
1月前
|
数据采集 存储 JavaScript
自动化数据处理:使用Selenium与Excel打造的数据爬取管道
本文介绍了一种使用Selenium和Excel结合代理IP技术从WIPO品牌数据库(branddb.wipo.int)自动化爬取专利信息的方法。通过Selenium模拟用户操作,处理JavaScript动态加载页面,利用代理IP避免IP封禁,确保数据爬取稳定性和隐私性。爬取的数据将存储在Excel中,便于后续分析。此外,文章还详细介绍了Selenium的基本设置、代理IP配置及使用技巧,并探讨了未来可能采用的更多防反爬策略,以提升爬虫效率和稳定性。
|
5天前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
18 1
|
1月前
|
数据处理 Python
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
这篇文章介绍了如何使用Python读取Excel文件中的数据,处理后将其保存为txt、xlsx和csv格式的文件。
45 3
Python实用记录(十):获取excel数据并通过列表的形式保存为txt文档、xlsx文档、csv文档
|
13天前
|
数据管理 程序员 数据处理
利用Python自动化办公:从基础到实践####
本文深入探讨了如何运用Python脚本实现办公自动化,通过具体案例展示了从数据处理、文件管理到邮件发送等常见办公任务的自动化流程。旨在为非程序员提供一份简明扼要的实践指南,帮助他们理解并应用Python在提高工作效率方面的潜力。 ####
|
1月前
|
easyexcel Java UED
SpringBoot中大量数据导出方案:使用EasyExcel并行导出多个excel文件并压缩zip后下载
在SpringBoot环境中,为了优化大量数据的Excel导出体验,可采用异步方式处理。具体做法是将数据拆分后利用`CompletableFuture`与`ThreadPoolTaskExecutor`并行导出,并使用EasyExcel生成多个Excel文件,最终将其压缩成ZIP文件供下载。此方案提升了导出效率,改善了用户体验。代码示例展示了如何实现这一过程,包括多线程处理、模板导出及资源清理等关键步骤。
|
1月前
|
存储 BI 数据库
使用 Python 实现自动化办公
使用 Python 实现自动化办公
|
2月前
|
数据安全/隐私保护 Python
Python办公自动化:给pdf加水印
Python办公自动化:给pdf加水印
32 0
|
2月前
|
Python
Python办公自动化:提取pdf文件中的图片
Python办公自动化:提取pdf文件中的图片
23 0
|
3月前
|
关系型数据库 MySQL Shell
不通过navicat工具怎么把查询数据导出到excel表中
不通过navicat工具怎么把查询数据导出到excel表中
44 0