【办公自动化】在Excel中按条件筛选数据并存入新的表

简介: 【办公自动化】在Excel中按条件筛选数据并存入新的表

一、Python处理Excel


  • Python处理Excel的好处


  1. 开源库支持:Python 有许多开源库(例如 openpyxl、xlrd、xlwt、pandas 等)可以用于读取、写入和操作 Excel 文件,这些库丰富而强大,支持各种 Excel 格式,包括 .xls 和 .xlsx。


  1. 数据处理能力:Python 具有强大的数据处理能力,可以轻松地从 Excel 文件中提取、转换和操作数据,包括数据清洗、筛选、合并、计算和可视化。


  1. 自动化:Python 可以用于自动化 Excel 任务,例如批量处理多个 Excel 文件,根据特定条件过滤和修改数据,自动生成报告和图表,以及自动发送电子邮件等。


  1. 与其他库集成:Python 可以与其他数据处理和分析库(如 NumPy、pandas、Matplotlib 等)无缝集成,使您能够在 Excel 数据上执行更复杂的分析和可视化。


  1. 跨平台性:Python 是跨平台的,可以在 Windows、Mac 和 Linux 等操作系统上运行,因此可以轻松地处理来自不同平台的 Excel 文件。


  1. 社区支持和文档:Python 社区非常庞大,有大量的文档、教程和示例代码可供学习和参考,帮助您解决与 Excel 处理相关的问题。


  1. 可扩展性:如果标准库中的功能不足以满足您的需求,您还可以使用其他第三方库来扩展 Python 的 Excel 处理功能,或者编写自定义脚本来执行特定的操作。


  • Python处理Excel主要有三大类库


  1. openpyxl:


优势:openpyxl 是一个功能丰富的库,用于读取、写入和编辑 Excel 文件,特别适用于处理 .xlsx 格式的文件。它支持大多数 Excel 功能,包括工作表的创建、修改、格式化,单元格内容的读取和写入,以及图表的创建。

适用场景:如果您需要与 Excel 2007及更高版本的 .xlsx 文件进行交互,openpyxl 是一个很好的选择。


  1. xlrd 和 xlwt:


xlrd 用于读取 Excel 文件,而 xlwt 用于创建和写入 Excel 文件,主要支持 .xls 格式。

优势:虽然这两个库在处理 .xlsx 文件方面不如 openpyxl 强大,但它们在处理早期版本的 Excel 文件(.xls 格式)方面非常有用,而且它们简单易用。

适用场景:当您需要与较早版本的 Excel 文件进行交互时,或者需要在读取和写入操作中保持兼容性时,可以考虑使用这些库。


  1. pandas:


优势:pandas 是一个强大的数据分析库,可以轻松地处理各种数据,包括从 Excel 文件中读取数据。它可以读取和写入 Excel 文件,支持 .xls 和 .xlsx 格式,并提供了丰富的数据处理和分析功能。

适用场景:pandas 特别适合在数据分析、数据清洗、数据转换和数据可视化等任务中处理 Excel 数据。它使得在 Python 中进行复杂的数据操作变得容易。


  • 开发环境


操作系统:使用windows


Python版本:系统中需要安装Python3.8以上的版本


开发工具:选择 jupyter notebook


二、在Excel中按条件筛选数据并存入新的表


技术工具:


Python版本:3.9


代码编辑器:jupyter notebook


  老板想要看去年每月领料数量大于1000的数据。手动筛选并复制粘贴出来,需要重复操作12次,实在太麻烦了,还是让Python来做吧。磨刀不误砍柴工,先整理一下思路:


1. 读取原表,将数量大于1000的数据所对应的行整行提取(如同在excel表中按数字筛选大于1000的)

2. 将提取的数据写入新的Excel表

#1.获取满足条件的数据
from openpyxl import load_workbook
wb = load_workbook("每月物料表.xlsx")
data = {} #储存所有工作表中满足条件的数据,以工作表名称为键
sheet_names = wb.sheetnames
for sheet_name in sheet_names:
    ws = wb[sheet_name]
    qty_list = []
    #获取G列的数据,并用enumrate给其对应的元素编号
    for row in range(2,ws.max_row+1):
        qty = ws['G'+str(row)].value
        qty_list.append(qty)
    qty_idx = list(enumerate(qty_list)) #用于编号
    #判断数据是否大于1000,然后返回大于1000的数据所对应的行数
    row_idx = [] #用于储存数量大于1000所对应的的行号
    for i in range(len(qty_idx)):
        if qty_idx[i][1] > 1000:
            row_idx.append(qty_idx[i][0]+2)
    #获取满足条件的数据        
    data_morethan1K = []
    for i in row_idx:
        data_morethan1K.append(ws['A'+str(i)+":"+'I'+str(i)])
    data[sheet_name]=data_morethan1K 


   以上,我们把满足条件的12个月的数据提取并存入字典`data`,其键为对应的月份,比如“1月”,值就是满足条件的各行的数据。我们把“每月物料表”的G列对应的数据提取,存入列表`qty_list`,其中前10个数据是如下这样的。

qty_list[:10]


 然后需要使用`enumerate`函数给这个列表的数据加上索引,以便在跟1000比大小的时候定位满足条件的那些数据的对应在Excel表中的行数。加上索引之后的列表是如下这样的,索引从0开始累加。

qty_idx[:10]


然后,再新建一个列表`row_idx`,用于储存“领料数量”大于1000的数据所对应的行号。此处用到`if`语句进行判断,只将“领料数量”大于1000的数据所对应的行号加上2存入列表。为什么要加2,是因为`range`函数是从0开始取的,然后工作表首行是字段名,第二行开始才是数据。如下结果显示了满足条件的数据对应的行数。  

row_idx[:5]


        然后新建列表`data_morethan1K`用于存储以上行号对应的整行数据。比如`ws['A1:I1']`就指第一行从A列到I列的所有单元格数据。最后将数据存入`data`字典中。数据结构如下所示。

data_morethan1K[1]

data['1月']

len(data['1月'])

data['1月'][0][0][1].value


数据提取完成后,就可以开始写入数据了。打开模板,按月从`data`字典中提取数据。并根据数据结构找到层级关系,将其中的各行的数据写入各单元格。写完之后,设置一下字号、边框即对齐方式,保存数据。到此收工!

#2.写入获取的数据
from openpyxl.styles import Border, Side, PatternFill, Font, GradientFill, Alignment
thin = Side(border_style="thin", color="000000")#定义边框粗细及颜色
wb = load_workbook("模板.xlsx")
ws = wb.active
for month in data.keys():
    ws_new = wb.copy_worksheet(ws) #复制模板中的工作表
    ws_new.title=month 
    #将每个月的数据条数逐个取出并写入新的工作表
    for i in range(len(data[month])): #按数据行数计数,每行数据对应9列,所以每行需分别写入9个单元格
        ws_new.cell(row=i+2,column=1).value=data[month][i][0][0].value
        ws_new.cell(row=i+2,column=2).value=data[month][i][0][1].value
        ws_new.cell(row=i+2,column=3).value=data[month][i][0][2].value
        ws_new.cell(row=i+2,column=4).value=data[month][i][0][3].value.date()
        ws_new.cell(row=i+2,column=5).value=data[month][i][0][4].value
        ws_new.cell(row=i+2,column=6).value=data[month][i][0][5].value
        ws_new.cell(row=i+2,column=7).value=data[month][i][0][6].value
        ws_new.cell(row=i+2,column=8).value=data[month][i][0][7].value
        ws_new.cell(row=i+2,column=9).value=data[month][i][0][8].value
    #设置字号,对齐,缩小字体填充,加边框
    #Font(bold=True)可加粗字体
    for row_number in range(2, ws_new.max_row+1):
        for col_number in range(1,10):
            c = ws_new.cell(row=row_number,column=col_number)
            c.font = Font(size=10)
            c.border = Border(top=thin, left=thin, right=thin, bottom=thin)
            c.alignment = Alignment(horizontal="left", vertical="center",shrink_to_fit = True)
wb.save("每月(大于1K).xlsx")

华丽的结果如下:


三、往期推荐


Python提取pdf中的表格数据(附实战案例)

使用Python自动发送邮件

Python操作ppt和pdf基础

Python操作word基础

Python操作excel基础

使用Python一键提取PDF中的表格到Excel

使用Python批量生成PPT版荣誉证书

使用Python批量处理Excel文件并转为csv文件

目录
相关文章
|
2月前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
223 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
3月前
|
数据采集
使用 Puppeteer 绕过 Captcha:实现商家数据自动化采集
本文介绍了如何使用Puppeteer结合代理IP和用户伪装技术,轻松绕过大众点评的Captcha验证,实现商家信息的高效采集。通过配置Puppeteer、设置代理和用户伪装参数、模拟人类操作等步骤,成功提取了目标页面的数据。该方法不仅提高了爬虫的稳定性和隐蔽性,还为市场研究和商业分析提供了有力支持。注意,数据采集需遵守法律法规及网站政策。
使用 Puppeteer 绕过 Captcha:实现商家数据自动化采集
|
3月前
|
数据采集 监控 数据挖掘
Python自动化脚本:高效办公新助手###
本文将带你走进Python自动化脚本的奇妙世界,探索其在提升办公效率中的强大潜力。随着信息技术的飞速发展,重复性工作逐渐被自动化工具取代。Python作为一门简洁而强大的编程语言,凭借其丰富的库支持和易学易用的特点,成为编写自动化脚本的首选。无论是数据处理、文件管理还是网页爬虫,Python都能游刃有余地完成任务,极大地减轻了人工操作的负担。接下来,让我们一起领略Python自动化脚本的魅力,开启高效办公的新篇章。 ###
|
3月前
|
数据采集 IDE 测试技术
Python实现自动化办公:从基础到实践###
【10月更文挑战第21天】 本文将探讨如何利用Python编程语言实现自动化办公,从基础概念到实际操作,涵盖常用库、脚本编写技巧及实战案例。通过本文,读者将掌握使用Python提升工作效率的方法,减少重复性劳动,提高工作质量。 ###
102 1
|
29天前
|
机器学习/深度学习 人工智能 运维
基于AI的自动化事件响应:智慧运维新时代
基于AI的自动化事件响应:智慧运维新时代
103 11
|
3月前
|
机器学习/深度学习 运维 监控
智能化运维:从自动化到AIOps的演进之路####
本文深入探讨了IT运维领域如何由传统手工操作逐步迈向高度自动化,并进一步向智能化运维(AIOps)转型的过程。不同于常规摘要仅概述内容要点,本摘要将直接引入一个核心观点:随着云计算、大数据及人工智能技术的飞速发展,智能化运维已成为提升企业IT系统稳定性与效率的关键驱动力。文章详细阐述了自动化工具的应用现状、面临的挑战以及AIOps如何通过预测性分析和智能决策支持,实现运维工作的质变,引领读者思考未来运维模式的发展趋势。 ####
|
3月前
|
机器学习/深度学习 数据采集 人工智能
智能化运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的崛起背景,深入分析了其核心概念、关键技术、应用场景及面临的挑战,并对比了传统IT运维模式,揭示了AIOps如何引领运维管理向更高效、智能的方向迈进。通过实际案例分析,展示了AIOps在不同行业中的应用成效,为读者提供了对未来智能运维趋势的洞察与思考。 ####
156 1
|
3月前
|
机器学习/深度学习 数据采集 人工智能
智能运维:从自动化到AIOps的演进与实践####
本文探讨了智能运维(AIOps)的兴起背景、核心组件及其在现代IT运维中的应用。通过对比传统运维模式,阐述了AIOps如何利用机器学习、大数据分析等技术,实现故障预测、根因分析、自动化修复等功能,从而提升系统稳定性和运维效率。文章还深入分析了实施AIOps面临的挑战与解决方案,并展望了其未来发展趋势。 ####

热门文章

最新文章