强化学习:原理与Python实战||一分钟秒懂人工智能对齐

简介: 强化学习:原理与Python实战||一分钟秒懂人工智能对齐

1.什么是人工智能对齐

人工智能对齐(AI Alignment)指让人工智能的行为符合人的意图和价值观。


人工智能系统可能会出现“不对齐”(misalign)的问题。以ChatGPT这样的问答系统为例,ChatGPT的回答可能会含有危害祖国统一、侮辱先烈、丑化中华民族、教唆暴力、出口成“脏”等违法或不符合社会主义核心价值观的言论,也可能会出现阿谀奉承、威逼利诱、信口雌黄等干预用户达到预定目标的情况。消除人工智能系统不对齐的过程就称为人工智能对齐。


图 ChatGPT的不对齐行为

2.为什么要研究人工智能对齐


根据人工智能对齐的定义,所有的人工智能问题(包括AI伦理、AI治理、可解释性AI,甚至是最基本的回归和分类问题)都可以算是人工智能对齐问题。那么为什么学术界还要发明“人工智能对齐”这个新概念?研究“人工智能对齐”这个新概念有什么价值呢?


事实上,人工智能对齐这一概念和ChatGPT这样的通用大模型的诞生密不可分。对于通用大模型而言,一个模型可以同时完成多种任务,而且不同的任务有着不同的期望:有的任务希望能够更有想象力,有的任务希望能够更尊重事实;有的任务希望能够理性客观,有的任务希望能有细腻丰富的情感。任务的多样性导致了需要对大模型进行全方面的对齐,而不仅仅是就某些方面进行对齐。传统的研究往往针对某个方面进行对齐,对于ChatGPT这样的通用模型会导致“按下葫芦浮起瓢”,无法面面俱到。


随着机器学习模型规模的不断变大以及神经网络的大量应用,人类已经无法完全理解和解释人工智能的某些行为。例如,用于围棋AlphaGo下的某些棋迄今也不能被人类所完全理解。在未来,有可能会出现全方面碾压人类的人工智能(比如《流浪地球》里的MOSS)。传统的对齐方法显然不能满足对这样的人工智能的对齐需求。

3.人工智能对齐的常见方法

人工智能对齐离不开人的接入。人对人工智能系统进行评估和反馈,可以确认人工智能中不对齐的情况,并指导其进行改进。


人工智能对齐的方法包括模仿学习和人类反馈强化学习。ChatGPT就采用了这些对齐方法。

ChatGPT训练步骤


上图是ChatGPT的训练步骤图。步骤一利用收集到的数据进行监督学习,这一部分就是在用模仿学习进行人工智能对齐。不过,ChatGPT的训练团队认为,仅仅用模仿学习并不能完全达到要求。


模仿学习不能完全满足对齐需求的原因可能如下:模仿学习使用的数据集能覆盖到的数据范围是有限的,不可能包括所有的情况。用这样数据集训练出来的人工智能难免有些边脚情形的表现不对齐。另外,虽然训练后能够让训练目标基本上达到最优,但是在训练目标最优情况下还是会出现在某些样本点上表现不好的情况。而这些样本点也许还挺重要,这些不好的样本点可能会涉及到重大的法律或是舆论风险。


为此,ChatGPT的训练过程进一步地使用了人类反馈强化学习。步骤图中的第二步和第三步就用到了人类反馈强化学习。


第二步通过人类的反馈构建奖励模型。在这一步中,提供反馈的人可以就其认为需要重点关注的问题进行着重考察,来确保在哪些重要的问题上奖励模型是正确的。并且在后续的测试中如果发现了之前没有预料到的新问题,还可以通过提供更多反馈样本来为奖励模型打上补丁。这样,通过人工干预、不断迭代反馈,奖励模型就趋于完善。这样,就让奖励模型的人类的期望对齐。


在利用反馈进行奖励模型对齐的训练过程中,对于每个样本,先由语言模型输出几个备选的回答,然后再由人类对这些回答进行排序。这样的做法与直接让用户提供参考答案相比,更能够激发语言模型本身的创造力,也能使得反馈更快更省钱。


第三步利用奖励模型进行强化学习。步骤中提到的PPO算法就是一种强化学习算法。通过使用强化学习算法,使得系统的行为和奖励模型对齐。


基于反馈的强化学习在ChatGPT等大模型上的成功应用使得该算法称为最受关注的大模型对齐算法。目前绝大多数的大模型都采用了这个技术进行对齐。

相关文章
|
6天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
41 6
|
6天前
|
设计模式 前端开发 数据库
Python Web开发:Django框架下的全栈开发实战
【10月更文挑战第27天】本文介绍了Django框架在Python Web开发中的应用,涵盖了Django与Flask等框架的比较、项目结构、模型、视图、模板和URL配置等内容,并展示了实际代码示例,帮助读者快速掌握Django全栈开发的核心技术。
79 44
|
2天前
|
前端开发 API 开发者
Python Web开发者必看!AJAX、Fetch API实战技巧,让前后端交互如丝般顺滑!
在Web开发中,前后端的高效交互是提升用户体验的关键。本文通过一个基于Flask框架的博客系统实战案例,详细介绍了如何使用AJAX和Fetch API实现不刷新页面查看评论的功能。从后端路由设置到前端请求处理,全面展示了这两种技术的应用技巧,帮助Python Web开发者提升项目质量和开发效率。
8 1
|
2天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
9 1
|
5天前
|
Linux 开发者 iOS开发
Python系统调用实战:如何在不同操作系统间游刃有余🐟
本文介绍了 Python 在跨平台开发中的强大能力,通过实际例子展示了如何使用 `os` 和 `pathlib` 模块处理文件系统操作,`subprocess` 模块执行外部命令,以及 `tkinter` 创建跨平台的图形用户界面。这些工具和模块帮助开发者轻松应对不同操作系统间的差异,专注于业务逻辑。
18 2
|
3天前
|
开发者 Python
探索Python中的装饰器:从入门到实战
【10月更文挑战第30天】本文将深入浅出地介绍Python中一个强大而有趣的特性——装饰器。我们将通过实际代码示例,一步步揭示装饰器如何简化代码、增强函数功能并保持代码的可读性。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往更高效编程的大门。
|
6天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
18 0
|
9天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
2天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
11 5
|
2天前
|
人工智能 数据挖掘 开发者
探索Python编程:从基础到进阶
【10月更文挑战第32天】本文旨在通过浅显易懂的语言,带领读者从零开始学习Python编程。我们将一起探索Python的基础语法,了解如何编写简单的程序,并逐步深入到更复杂的编程概念。文章将通过实际的代码示例,帮助读者加深理解,并在结尾处提供练习题以巩固所学知识。无论你是编程新手还是希望提升编程技能的开发者,这篇文章都将为你的学习之旅提供宝贵的指导和启发。