强化学习:原理与Python实战||一分钟秒懂人工智能对齐

简介: 强化学习:原理与Python实战||一分钟秒懂人工智能对齐

1.什么是人工智能对齐

人工智能对齐(AI Alignment)指让人工智能的行为符合人的意图和价值观。


人工智能系统可能会出现“不对齐”(misalign)的问题。以ChatGPT这样的问答系统为例,ChatGPT的回答可能会含有危害祖国统一、侮辱先烈、丑化中华民族、教唆暴力、出口成“脏”等违法或不符合社会主义核心价值观的言论,也可能会出现阿谀奉承、威逼利诱、信口雌黄等干预用户达到预定目标的情况。消除人工智能系统不对齐的过程就称为人工智能对齐。


图 ChatGPT的不对齐行为

2.为什么要研究人工智能对齐


根据人工智能对齐的定义,所有的人工智能问题(包括AI伦理、AI治理、可解释性AI,甚至是最基本的回归和分类问题)都可以算是人工智能对齐问题。那么为什么学术界还要发明“人工智能对齐”这个新概念?研究“人工智能对齐”这个新概念有什么价值呢?


事实上,人工智能对齐这一概念和ChatGPT这样的通用大模型的诞生密不可分。对于通用大模型而言,一个模型可以同时完成多种任务,而且不同的任务有着不同的期望:有的任务希望能够更有想象力,有的任务希望能够更尊重事实;有的任务希望能够理性客观,有的任务希望能有细腻丰富的情感。任务的多样性导致了需要对大模型进行全方面的对齐,而不仅仅是就某些方面进行对齐。传统的研究往往针对某个方面进行对齐,对于ChatGPT这样的通用模型会导致“按下葫芦浮起瓢”,无法面面俱到。


随着机器学习模型规模的不断变大以及神经网络的大量应用,人类已经无法完全理解和解释人工智能的某些行为。例如,用于围棋AlphaGo下的某些棋迄今也不能被人类所完全理解。在未来,有可能会出现全方面碾压人类的人工智能(比如《流浪地球》里的MOSS)。传统的对齐方法显然不能满足对这样的人工智能的对齐需求。

3.人工智能对齐的常见方法

人工智能对齐离不开人的接入。人对人工智能系统进行评估和反馈,可以确认人工智能中不对齐的情况,并指导其进行改进。


人工智能对齐的方法包括模仿学习和人类反馈强化学习。ChatGPT就采用了这些对齐方法。

ChatGPT训练步骤


上图是ChatGPT的训练步骤图。步骤一利用收集到的数据进行监督学习,这一部分就是在用模仿学习进行人工智能对齐。不过,ChatGPT的训练团队认为,仅仅用模仿学习并不能完全达到要求。


模仿学习不能完全满足对齐需求的原因可能如下:模仿学习使用的数据集能覆盖到的数据范围是有限的,不可能包括所有的情况。用这样数据集训练出来的人工智能难免有些边脚情形的表现不对齐。另外,虽然训练后能够让训练目标基本上达到最优,但是在训练目标最优情况下还是会出现在某些样本点上表现不好的情况。而这些样本点也许还挺重要,这些不好的样本点可能会涉及到重大的法律或是舆论风险。


为此,ChatGPT的训练过程进一步地使用了人类反馈强化学习。步骤图中的第二步和第三步就用到了人类反馈强化学习。


第二步通过人类的反馈构建奖励模型。在这一步中,提供反馈的人可以就其认为需要重点关注的问题进行着重考察,来确保在哪些重要的问题上奖励模型是正确的。并且在后续的测试中如果发现了之前没有预料到的新问题,还可以通过提供更多反馈样本来为奖励模型打上补丁。这样,通过人工干预、不断迭代反馈,奖励模型就趋于完善。这样,就让奖励模型的人类的期望对齐。


在利用反馈进行奖励模型对齐的训练过程中,对于每个样本,先由语言模型输出几个备选的回答,然后再由人类对这些回答进行排序。这样的做法与直接让用户提供参考答案相比,更能够激发语言模型本身的创造力,也能使得反馈更快更省钱。


第三步利用奖励模型进行强化学习。步骤中提到的PPO算法就是一种强化学习算法。通过使用强化学习算法,使得系统的行为和奖励模型对齐。


基于反馈的强化学习在ChatGPT等大模型上的成功应用使得该算法称为最受关注的大模型对齐算法。目前绝大多数的大模型都采用了这个技术进行对齐。

相关文章
|
3月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
420 7
|
3月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
3月前
|
存储 分布式计算 测试技术
Python学习之旅:从基础到实战第三章
总体来说,第三章是Python学习路程中的一个重要里程碑,它不仅加深了对基础概念的理解,还引入了更多高级特性,为后续的深入学习和实际应用打下坚实的基础。通过这一章的学习,读者应该能够更好地理解Python编程的核心概念,并准备好应对更复杂的编程挑战。
134 12
|
3月前
|
存储 数据采集 监控
Python文件操作全攻略:从基础到高级实战
本文系统讲解Python文件操作核心技巧,涵盖基础读写、指针控制、异常处理及大文件分块处理等实战场景。结合日志分析、CSV清洗等案例,助你高效掌握文本与二进制文件处理,提升程序健壮性与开发效率。(238字)
370 1
|
3月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
335 0
|
3月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
418 0
|
10月前
|
机器学习/深度学习 存储 人工智能
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
12月前
|
机器学习/深度学习 人工智能 运维
人工智能在事件管理中的应用
人工智能在事件管理中的应用
323 21
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
270 11

推荐镜像

更多