转弯半径-深度学习训练

简介: 转弯半径(RADIUS OF TURNING CIRCLE),是指汽车行驶过程中,由转向中心到前外转向轮与地面接触点的距离。当方向盘转到极限位置时,由转向中心到前外转向轮接地中心的距离称为最小转弯半径,它反映了汽车通过最小曲率半径弯曲道路的能力和在狭窄路面上调头行驶的能力。

image.png
转弯半径(RADIUS OF TURNING CIRCLE),是指汽车行驶过程中,由转向中心到前外转向轮与地面接触点的距离。当方向盘转到极限位置时,由转向中心到前外转向轮接地中心的距离称为最小转弯半径,它反映了汽车通过最小曲率半径弯曲道路的能力和在狭窄路面上调头行驶的能力。

image.png

最小转弯半径

最小转弯半径越小,表明汽车的机动性能越好。其值得大小与汽车的轴距、轮距及转向轮的最大转角有关,并应根据汽车类型、用途、道路条件、结构特点及轴距等尺寸在设计时妥善选取。

各类汽车的最小转弯半径如表所示。

阿克曼转向

为了避免在汽车转向时产生路面对汽车行驶的附加阻力和轮胎过快磨损,要求转向系统能保证在汽车转向时使所有车轮均作纯滚动。显然,这只有在所有车轮的轴线都相交于一点方能实现。此交点称为转向中心。对于两轴汽车,内转向轮偏转角β应大于外转向轮偏转角α

image.png

圆弧半径等于车辆轴距除以sin转角,这个公式是用来计算汽车在转弯时所需的转弯半径的。其中,圆弧半径是指汽车在转弯过程中,从转向中心到前外转向轮与地面接触点的距离。image.png

为什么是圆弧半径,而不是圆弧长或者弦长呢?因为圆弧半径直接影响到汽车在转弯过程中的机动性和稳定性。转弯半径越小,汽车的转向角度就越大,汽车通过狭窄弯曲地带或绕开不可越过的障碍物的能力就越强,汽车就越灵活。而圆弧长或弦长并不能直接反映汽车的转向能力和机动性。
因此,在计算汽车转弯半径时,我们通常使用圆弧半径这个概念。同时,圆弧半径也直接影响到汽车的设计和制造,如汽车的轴距、轮距以及转向轮的极限转角等参数,都是根据转弯半径的要求来设计和调整的。

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 测试技术
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
本文是关于如何搭建深度学习环境,特别是使用mmdetection进行CPU安装和训练的详细指南。包括安装Anaconda、创建虚拟环境、安装PyTorch、mmcv-full和mmdetection,以及测试环境和训练目标检测模型的步骤。还提供了数据集准备、检查和网络训练的详细说明。
114 5
深度学习环境搭建笔记(二):mmdetection-CPU安装和训练
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
67 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
4月前
|
机器学习/深度学习
神经网络与深度学习---验证集(测试集)准确率高于训练集准确率的原因
本文分析了神经网络中验证集(测试集)准确率高于训练集准确率的四个可能原因,包括数据集大小和分布不均、模型正则化过度、批处理后准确率计算时机不同,以及训练集预处理过度导致分布变化。
|
16天前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
42 8
|
1月前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
101 3
|
2月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
2月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
432 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
2月前
|
机器学习/深度学习 决策智能
深度学习中的对抗性训练
在这篇技术性文章中,我们将深入探讨深度学习中的对抗性训练。这种训练方法通过引入对抗性样本来提高模型的鲁棒性和泛化能力。文章将从对抗性训练的基本概念、原理以及实现方法等方面进行详细介绍,并结合实际案例分析其在实际应用中的效果和挑战。通过对这一主题的探讨,希望能够为读者提供有益的技术参考和启示。
101 1
|
2月前
|
机器学习/深度学习 存储 人工智能
深度学习之不遗忘训练
基于深度学习的不遗忘训练(也称为抗遗忘训练或持久性学习)是针对模型在学习新任务时可能会忘记已学习内容的一种解决方案。该方法旨在使深度学习模型在不断接收新信息的同时,保持对旧知识的记忆。
59 4
|
3月前
|
机器学习/深度学习 人工智能 监控
一文读懂deepSpeed:深度学习训练的并行化
DeepSpeed 是由微软开发的开源深度学习优化库,旨在提高大规模模型训练的效率和可扩展性。通过创新的并行化策略、内存优化技术(如 ZeRO)及混合精度训练,DeepSpeed 显著提升了训练速度并降低了资源需求。它支持多种并行方法,包括数据并行、模型并行和流水线并行,同时与 PyTorch 等主流框架无缝集成,提供了易用的 API 和丰富的文档支持。DeepSpeed 不仅大幅减少了内存占用,还通过自动混合精度训练提高了计算效率,降低了能耗。其开源特性促进了 AI 行业的整体进步,使得更多研究者和开发者能够利用先进优化技术,推动了 AI 在各个领域的广泛应用。