基于BP神经网络的手写体数字识别matlab仿真

简介: 基于BP神经网络的手写体数字识别matlab仿真

1.算法运行效果图预览

ef0d9c88906fcfcaeff04696999369c8_82780907_202402012356120120502280_Expires=1706803572&Signature=vUT1d6ZBBhg5PoReSZ0420odFfw%3D&domain=8.jpeg
7e8c719caac57fbaa1710f2b9fdb0921_82780907_202402012356120167636143_Expires=1706803572&Signature=iB6rmjBpbVquwLd4jpj6gZG052k%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
人工神经元网络是生理学上的真实人脑神经网络的机构和功能,以及若干基本特性的某种理论抽象、简化和模拟而构成的一种信息处理系统。从构造上大致可分为最简单的感知器网络、多层前馈型神经网络、反馈型神经网络和自组织神经元网络等。

    由于神经网络具有可并行计算、分布式信息存储自适应和学习能力强等优点,在很多领域获得了极其广泛的应用。尤其是BP网络,即反向传播网络,其应用最为广泛。BP网络是利用非线性可微分函数进行权值训练的多层网络,在函数逼近、模式识别、信息分类及数据压缩等领域得到了广泛的应用。

    但是神经网络学习过程的算法在数学计算上都比较复杂,过程也比较繁琐,容易出错。因此,采用计算机辅助进行神经网络设计与分析成了必然的选择。目前,在比较成熟的神经网络软件包中,MATLAB的神经网络工具箱应用最为广泛。MATLAB是矩阵实验室(Matrix Laboratory)的简称,它可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

   手写体数字识别系统的结构图如图所示。

23b544014379e50af33c5cb20c66dcdb_82780907_202402012355310276554979_Expires=1706803531&Signature=HoszHo8C%2Bfj4eXUiUhcNh4UupOg%3D&domain=8.png

    在对字体进行预处理后要进行的是特征的提取,选取图像的灰度特征时要考虑到特征量的维数与识别的准确率的要求。例如,我们将一个字符归—化为17像素×8像素点阵图。按每个像素位为0或1,形成网络的136个输入特征值。得到的特征图像是二值图像,对应一个元素为0和l的17像素×8像素的特征矩阵,然后是对特征图像编码。编码规则是,按照从左至右、从上到下的顺序,依次扫描整个特征矩阵,将每一行的0和1转换成一个136像素×1像素的特征列。将每一个字符都进行编码后,顺序送送入已经训练好的神经网络识别,识别结果最后以文本格式输出。

   BP网络是神经网络的一个分支,又称为多层感知或误差信号反馈网络。它是目前较流行的,应用最广的神经网络模型。BP网络是一种有教师的学习网络,其主要特点是能够实现从n到m维的非线性映射,它还可以采用梯度下降法实现快速收敛。如图所示为BP网络示意图。

60cc649a21be9624bdf5b19908c4438f_82780907_202402012354350636113305_Expires=1706803475&Signature=jpPaD4TtAoBDpIXpzLD0OOHU9eg%3D&domain=8.png

4.部分核心程序
```filename = dir('images*.bmp'); %图像文件格式
load BP.mat

filename = dir('test*.bmp'); %图像文件格式
%测试集测试
figure;
for k=1:60
filename(k).name
p(1:256,1)=1; %初始图像二值化像素
p1=ones(16,16);
%加载训练好的网络
x=imread(filename(k).name);

bw=im2bw(x,0.5);              %二值化
[i,j]= find(bw==0);           %寻找数字所在的像素索引
imin=min(i);                  %求取数字像素占据空间的最小行索引
imax=max(i);                  %求取数字像素占据空间的最大行的索引
jmin=min(j);                  %求取数字像素占据空间的最小列的索引
jmax=max(j);                  %求取数字像素占据空间的最大列的索引
bwl=bw(imin:imax,jmin:jmax);  %把图像由39×39缩放为实际数字像素所需的空间
rate=16/max(size(bwl));       %求取放大比率
bwl=imresize(bwl,rate);       %按比率放大图像
[i,j]=size(bwl);              %求取行列数
i1=round((16-i)/2);           %取整
j1=round((16-j)/2);
p1(i1+1:i1+i,j1+1:j1+j)=bwl;  %图像从右向暂存
p1=-1.*p1+ones(16,16);        %将图像反色
for m=0:15                    %样本特征存于输入矢量
     p(m*16+1:(m+1)*16,1)=p1(1:16,m+1);  
end
[a,Pf,Af]=sim(net,p);      %测试
subplot(10,6,k);
imshow(x);                 %显示原始图像
a=round(a);                %显示识别结果
title(['识别结果:',num2str(a)]);                 

end

```

相关文章
|
5天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
12天前
|
机器学习/深度学习 算法 关系型数据库
基于PSO-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目展示了利用粒子群优化(PSO)算法优化支持向量机(SVM)参数的过程,提高了分类准确性和泛化能力。包括无水印的算法运行效果预览、Matlab2022a环境下的实现、核心代码及详细注释、操作视频,以及对PSO和SVM理论的概述。PSO-SVM结合了PSO的全局搜索能力和SVM的分类优势,特别适用于复杂数据集的分类任务,如乳腺癌诊断等。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
2月前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析码长,码率,信道对译码性能的影响,对比卷积码,turbo码以及BCH码
本程序系统基于BP译码的LDPC误码率MATLAB仿真,分析不同码长、码率、信道对译码性能的影响,并与卷积码、Turbo码及BCH编译码进行对比。升级版增加了更多码长、码率和信道的测试,展示了LDPC码的优越性能。LDPC码由Gallager在1963年提出,具有低复杂度、可并行译码等优点,近年来成为信道编码研究的热点。程序在MATLAB 2022a上运行,仿真结果无水印。
59 0
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
9天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者更好地保护自己的网络安全和信息安全。
|
1天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
23 10
|
2天前
|
存储 安全 网络安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
随着云计算技术的飞速发展,越来越多的企业和个人开始使用云服务。然而,云计算的广泛应用也带来了一系列网络安全问题。本文将从云服务、网络安全、信息安全等方面探讨云计算与网络安全的关系,分析当前面临的挑战,并提出相应的解决方案。
19 3
|
8天前
|
安全 算法 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在当今数字化时代,网络安全和信息安全已经成为了全球关注的焦点。随着技术的发展,网络攻击手段日益狡猾,而防范措施也必须不断更新以应对新的挑战。本文将深入探讨网络安全的常见漏洞,介绍加密技术的基本概念和应用,并强调培养良好安全意识的重要性。通过这些知识的分享,旨在提升公众对网络安全的认识,共同构建更加安全的网络环境。