YOLOv8改进之C2f模块融合CVPR2023 SCConv

简介: 卷积在各种计算机视觉任务中表现出色,但是由于卷积层提取冗余特征,其计算资源需求巨大。虽然过去用于改善网络效率的各种模型压缩策略和网络设计,包括网络剪枝、权重量化、低秩分解和知识蒸馏等。然而,这些方法都被视为后处理步骤,因此它们的性能通常受到给定初始模型的上限约束。而网络设计另辟蹊径,试图减少密集模型参数中的固有冗余,进一步开发轻量级网络模型。

1. SCConv


卷积在各种计算机视觉任务中表现出色,但是由于卷积层提取冗余特征,其计算资源需求巨大。虽然过去用于改善网络效率的各种模型压缩策略和网络设计,包括网络剪枝、权重量化、低秩分解和知识蒸馏等。然而,这些方法都被视为后处理步骤,因此它们的性能通常受到给定初始模型的上限约束。而网络设计另辟蹊径,试图减少密集模型参数中的固有冗余,进一步开发轻量级网络模型。


SCConv模块的设计

为了解决上述问题,论文(SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy (thecvf.com))提出了一个新的卷积模块,名为SCConv,这个模块利用了两个组件:空间重建单元(SRU)和通道重建单元(CRU)。


SRU 通过一种分离-重建的方法抑制空间冗余

CRU 则采用一种分割-转换-融合的策略减少通道冗余

此外,SCConv 是一个即插即用的架构单元,可以直接替换各种卷积神经网络中的标准卷积。


SCConv模块的性能

SCConv 模块旨在有效地限制特征冗余,不仅减少了模型参数和FLOPs的数量,而且增强了特征表示的能力。实际上,SCConv 模块提供了一种新的视角来看待CNNs的特征提取过程,提出了一种更有效地利用空间和通道冗余的方法,从而在减少冗余特征的同时提高模型性能。实验结果显示,嵌入了 SCConv 模块的模型能够通过显著降低复杂性和计算成本,减少冗余特征,从而达到更好的性能。



SRU



CRU



2. YOLOv8 C2f融合SCConv模块


加入融合ScConv的C2f模块,在ultralytics包中的nn包的modules中的block.py文件中添加改进模块。代码如下:

class SRU(nn.Module):
    def __init__(self,
                 oup_channels: int,
                 group_num: int = 16,
                 gate_treshold: float = 0.5
                 ):
        super().__init__()
        self.gn = GroupBatchnorm2d(oup_channels, group_num=group_num)
        self.gate_treshold = gate_treshold
        self.sigomid = nn.Sigmoid()
    def forward(self, x):
        gn_x = self.gn(x)
        w_gamma = self.gn.gamma / sum(self.gn.gamma)
        reweigts = self.sigomid(gn_x * w_gamma)
        # Gate
        info_mask = reweigts >= self.gate_treshold
        noninfo_mask = reweigts < self.gate_treshold
        x_1 = info_mask * x
        x_2 = noninfo_mask * x
        x = self.reconstruct(x_1, x_2)
        return x
    def reconstruct(self, x_1, x_2):
        x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)
        x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)
        return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)
class CRU(nn.Module):
    '''
    alpha: 0<alpha<1
    '''
    def __init__(self,
                 op_channel: int,
                 alpha: float = 1 / 2,
                 squeeze_radio: int = 2,
                 group_size: int = 2,
                 group_kernel_size: int = 3,
                 ):
        super().__init__()
        self.up_channel = up_channel = int(alpha * op_channel)
        self.low_channel = low_channel = op_channel - up_channel
        self.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)
        self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)
        # up
        self.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,
                             padding=group_kernel_size // 2, groups=group_size)
        self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)
        # low
        self.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,
                              bias=False)
        self.advavg = nn.AdaptiveAvgPool2d(1)
    def forward(self, x):
        # Split
        up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
        up, low = self.squeeze1(up), self.squeeze2(low)
        # Transform
        Y1 = self.GWC(up) + self.PWC1(up)
        Y2 = torch.cat([self.PWC2(low), low], dim=1)
        # Fuse
        out = torch.cat([Y1, Y2], dim=1)
        out = F.softmax(self.advavg(out), dim=1) * out
        out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
        return out1 + out2
class ScConv(nn.Module):
    # https://github.com/cheng-haha/ScConv/blob/main/ScConv.py
    def __init__(self,
                 op_channel: int,
                 group_num: int = 16,
                 gate_treshold: float = 0.5,
                 alpha: float = 1 / 2,
                 squeeze_radio: int = 2,
                 group_size: int = 2,
                 group_kernel_size: int = 3,
                 ):
        super().__init__()
        self.SRU = SRU(op_channel,
                       group_num=group_num,
                       gate_treshold=gate_treshold)
        self.CRU = CRU(op_channel,
                       alpha=alpha,
                       squeeze_radio=squeeze_radio,
                       group_size=group_size,
                       group_kernel_size=group_kernel_size)
    def forward(self, x):
        x = self.SRU(x)
        x = self.CRU(x)
        return x
class Bottleneck_ScConv(Bottleneck):
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = ScConv(c2)
class C2f_ScConv(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Bottleneck_ScConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))


对融合ScConv的C2f模块的进行注册和引用,注册方式参考YOLOv8改进算法之添加CA注意力机制-CSDN博客


在tasks.py中的parse_model中添加C2f_ScConv:



新建相应的yaml文件,代码如下:


# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_ScConv, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_ScConv, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_ScConv, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_ScConv, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)


相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7184 1
|
机器学习/深度学习 编解码 PyTorch
CVPR 2023 | 主干网络FasterNet 核心解读 代码分析
本文分享来自CVPR 2023的论文,提出了一种快速的主干网络,名为FasterNet。核心算子是PConv,partial convolution,部分卷积,通过减少冗余计算和内存访问来更有效地提取空间特征。
9729 58
|
并行计算 数据挖掘 PyTorch
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
【YOLOv8改进 - 特征融合】DySample :超轻量级且高效的动态上采样器
|
12月前
|
机器学习/深度学习 计算机视觉 异构计算
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
本文介绍了将BiFPN网络应用于YOLOv8以增强网络性能的方法。通过双向跨尺度连接和加权特征融合,BiFPN能有效捕获多尺度特征,提高目标检测效果。文章还提供了详细的代码修改步骤,包括修改配置文件、创建模块文件、修改训练代码等,以实现YOLOv8与BiFPN的融合。
1682 0
YOLOv8优改系列一:YOLOv8融合BiFPN网络,实现网络快速涨点
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | Neck | 在网络中替换c2f为融合蛇形卷积的C2f_DySnakeConv
本专栏介绍的DSCNet采用蛇形动态卷积,增强对细长弯曲结构(如血管)的特征提取。该卷积操作灵感来自蛇形曲线,能自适应调整权重以关注管状结构局部特征。通过动态卷积核,网络能更好地处理形状变异,提升目标检测的准确性和鲁棒性。
|
机器学习/深度学习 计算机视觉
【YOLOv8改进-论文笔记】SCConv :即插即用的空间和通道重建卷积
该文介绍了一种针对卷积神经网络(CNN)的改进方法,名为SCConv,旨在减少计算冗余并提升特征学习效率。SCConv包含空间重构单元(SRU)和通道重构单元(CRU),分别处理空间和通道冗余。SRU利用分离-重构策略抑制空间冗余,而CRU通过分割-变换-融合策略减少通道冗余。SCConv可直接插入现有CNN架构中,实验结果显示,整合SCConv的模型能在降低复杂性和计算成本的同时保持或提高性能。此外,文章还展示了如何在YOLOv8中应用SCConv。
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。