带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(1)

本文涉及的产品
资源编排,不限时长
无影云电脑企业版,4核8GB 120小时 1个月
无影云电脑个人版,1个月黄金款+200核时
简介: 带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(1)

简介:随着人工智能(AI)的迅速发展,越来越多的应用需要巨大的GPU计算资源。Ada lovelace(后面简称Ada)是NVIDIA最新的图形处理器架构,随2022920日发布的RTX 4090一起公布。

背景:Ada lovelace(后面简称Ada)是NVIDIA最新的图形处理器架构,随2022920日发布的RTX 4090一起公布。本节对RTX 4090以及Ada架构及其新特性先做一个全面的梳理。性能分析部分处理器参照物主要是Hopper架构的GH100Ampere架构的GA100/GA102GPU参照物主要是H100GH100)和A100(GA100)3090 Ti(GA102)

Ada架构

Hopper架构的GH100一样,Ada架构的AD102也采用了台积电的4nm N4工艺制程,这使得AD102得以集成高达763亿个晶体管,同时可以获得更高的频率,GPU Boost Clock高达52GHz,使得搭载AD102RTX 4090成为目前频率最高的NVIDIA GPU

AD102搭载了新的第四代Tensor Core,低精度数据类型上,跟GH100一样,新增支持业界首创的FP8数据类型,支持INT8,但Ada增加了Hopper上去掉的INT4;高精度数据类型上,支持BF16数据类型,支持TF32数据类型,但Ada去掉了FP64TensorCore支持。同样,Ada架构每个SM张量核在等效数据类型上提供Ampere架构 SM2MMA(矩阵乘法累加)计算速率。针对深度学习领域,同样提供稀疏神经网络的硬件加速支持,标准张量核心操作性能翻倍。

得益于每个SM CUDA core性能提升2倍(相比Ampere数量翻倍)以及更多的SM数量,IEEE FP32的性能相比GA102也提升了近3倍。

Ada架构芯片搭载了新的第三代RT CoreTuring架构首次引入RT Core,可实现硬件加速的实时光线追踪渲染。),

每个SM的组合共享内存和L1数据缓存为128KB,整个AD102L1数据缓存可达18432KB

显存带宽为1TB/sGDDR6X

支持PCIe GEN4(双向带宽64GB/s)。

SM架构

Ada SM架构最重要的是搭载了第四代Tensor Core和新的第三代RT Core

 

架构总览

Ada完整的AD102芯片架构如下图所示:

image.png

配置如下:

12 GPCs, 72 TPCs(6 TPCs/GPC), 2 SMs/TPC, 12 SMs/GPC, 144 SMs per full GPU

∙        128 FP32 CUDA Cores/SM, 18432 FP32 CUDA Cores per full GPU

∙        4 forth-generation Tensor Cores/SM, 576 forth-generation Tensor Cores per full GPU

∙        GDDR6X, 384-bit memory interface with 12 32-bit memory controllers

∙        288 FP64 Cores(2 per SM)1/64th TFLOP rate of FP32

RTX 4090有一些裁剪,配置如下:

∙        11 GPCs, 64 TPCs, 2 SMs/TPC, 128 SMs

∙         128 FP32 CUDA Cores/SM, 16384 FP32 CUDA Cores per GPU

∙          4 forth-generation Tensor Cores/SM, 512 forth-generation Tensor Cores per full GPU

∙        5 HBM2 stacks, 10 512-bit memory controllers

∙        GDDR6X, 384-bit memory interface with 12 32-bit memory controller

GPC结构如果下图所示:

image.png

Ada架构每个GPC包含1Raster Engine(光栅化引擎),6TPC12SM16ROP(8 per ROP partition)

image.png

Ada架构每个 TPC 包含2 SM,每个 SM 包含 128 FP32 CUDA核心和64 INT32 CUDA核心(FP32Ampere2倍,INT32不变)、2FP64 CUDA核心(满足少量需要高精度的运算类型)、4个第四代Tensor核心、1个第三代RT核心。相比定位于数据中心计算的Hopper ,侧重于图形计算的Ada架构FP64核心数量大幅减少(上图因为数量太少并未画出),增加了一个RT核心。

如图所示,Ada SM 划分为4个处理块,每个处理块均包含32 FP32 CUDA核心、 16 INT32 CUDA核心、1 Tensor 核心、 1 个线程束调度器和 1 个分配单元。每个处理块还具有一个L0 指令缓存和一个 16 KB 寄存器堆。这四个处理块共享一个L1指令缓存,以及一个组合式的128 KB L1 数据缓存或共享内存,是Hopper GA100的一半。整个AD102L1缓存为18432KB,相比Ampere GA10210752KB提升了70%


带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(2):

https://developer.aliyun.com/article/1423693

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
相关文章
|
30天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
5天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
27 11
|
6天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
37 10
|
11天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
70 8
|
2月前
|
监控 算法 Java
jvm-48-java 变更导致压测应用性能下降,如何分析定位原因?
【11月更文挑战第17天】当JVM相关变更导致压测应用性能下降时,可通过检查变更内容(如JVM参数、Java版本、代码变更)、收集性能监控数据(使用JVM监控工具、应用性能监控工具、系统资源监控)、分析垃圾回收情况(GC日志分析、内存泄漏检查)、分析线程和锁(线程状态分析、锁竞争分析)及分析代码执行路径(使用代码性能分析工具、代码审查)等步骤来定位和解决问题。
|
2月前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
51 4
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
30 4