带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(2)

简介: 带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(2)

带你读《弹性计算技术指导及场景应用》——3. Ada Lovelace架构解读及RTX 4090性能测试分析(1):https://developer.aliyun.com/article/1423694


∙        第四代Tensor Core

◦        Ada架构搭载的第四代Tensor Core,大部分特性跟Hopper架构一样,最重要的是引入了一个新的数据类型FP8。不同的是去掉了FP64的支持,增加了INT4的支持。

◦        Tensor Core性能上,AD102相比GH100,大概是1/3的水平,跟GA100接近,是GA1022倍。相比Ampere架构主要是新增了FP8的支持。

∙        L2缓存

◦        AD102L2缓存增大到了98304KB,是GA102(6144KB)16倍。

◦        更大的L2缓存使得HPCAI应用可以将更多的数据缓存到L2,而不是放到显存上,从而获得更高的读写速度,比如小batch size的深度神经网络的计算。

∙        GDDR6X显存

◦        高达1TGB/s24GBGDDR6X显存,目前最高速的GDDR显存。

∙        GPU Spec

◦        RTX 4090是最新一代面向图形计算场景的GPU卡,我们将RTX 4090与上一代Ampere架构Tesla A100RTX 3090 Ti的主要参数做了对比如下:

GPU Type

RTX 4090

RTX 3090 Ti

A100(SXM4-80G)

GPU Architechture

AD102(Ada Lovelace)

GA102(Ampere)

GA100(Ampere)

GPCs(Graphics Processing Clusters)

11

7

7

TPCs(Texture Processing Clusters)

64

42

54

SMs(Streaming Multiprocessors )

128

84

108

FP32 CUDA Cores

16384

10752

6912

INT32 CUDA Cores

8192

5376

6912

FP64 CUDA Cores

N/A

N/A

3456

Tensor Cores

512

336

432

RT Cores

128

84

N/A

Geometry Units

64

41

N/A

TMUs(Texture Units)

512

336

432

ROPs(Raster Operation Units)

176

112

160

INT4(TOPS)

1322/2644

640/1280

1248/2496

INT8(TOPS)

660.6/1322

320/640

624/1248

INT32(TIPS)

43

20

19.5

BF16(TFLOPS)

86

40

39

FP16(TFLOPS)

86

40

78

FP32(TFLOPS)

86

40

19.5

FP64(TFLOPS)

3

N/A

19.7

Tensor Core FP8(TFLOPS)

660.6/1322

N/A

N/A

Tensor Core FP16(TFLOPS)

330/660

160/320

312/624

Tensor Core TF32(TFLOPS)

86/165.2

40/80

156/312

Tensor Core FP64(TFLOPS)

N/A

N/A

19.5

RTX-OPS(TOPS)

191

78.1

N/A

GPU Memory

24 GB GDDR6X

24 GB GDDR6X

80 GB HBM2e

Memory Clock(MHz)

1325

1219

1593

Memory Interface Width

384-bit

384-bit

5120-bit(10*512-bit)

Memory Bandwidth(GB/s)

1008

1008

2039

Interconnect Bandwidth(GB/s)

PCIe Gen4:64

PCIe Gen4:64

NVLINK:600

Default Graphic Clock(MHz)

2230

1395

1155

Max Graphic Clock(MHz)

2520

1860

1410

Power(Watt)

450

350

400

 

Spec来看,使用新架构的RTX 4090相对于RTX 3090 TiCUDA CoreTensor Core以及RT Core的性能均提升了2倍左右,显存容量和带宽并没有变化。而相比Tesla A100 Tensor Core性能是基本相当,略高5%。但是Tesla A100的显存带宽是RTX 40902倍,受限于显存带宽4090的算力发挥会受影响,推测小bsAI任务RTX 4090会略有优势或者与A100接近,但是随着bs增大,Tesla A100的性能应该会更好,而且随着bs增大差距会拉大。

当然以上都是硬件的理论性能指标,那么RTX 4090的实际性能表现如何呢?下面通过一些实测数据来分析。

性能实测

我们测试了RTX 4090在图像分类、文本生成、图片生成这几个主要AI任务的训练和推理性能,并和Tesla A100做了相应对比。测试都是单卡,不考虑GPU间通信带宽对性能的影响。

从下面的测试结果来看,基本跟上面的分析差不多,RTX 4090算力略高于A100,但受限于显存带宽,实际小任务时性能与A100接近,大任务时A100优势更大。

图像分类(ResNet50)

图像分类测试的是TensorFlow ResNet50-v5 Training的性能:

TensorFlow ResNet50-v5 Training

GPU nums

batch size per GPU

precision

variable_update

local_parameter_device

all_reduce_spec

4090(images/sec)

A100-80G(images/sec)

A100/4090

1

64

fp16

parameter_server

cpu

None

1324

1274.46

96.26%

1

128

fp16

parameter_server

cpu

None

1356.46

17825

1346%

1

64

fp16

parameter_server

gpu

None

1614.9

1784.63

110.51%

1

128

fp16

parameter_server

gpu

None

14791

1978.99

134.36%

1

64

fp16

replicated

gpu

None

15949

1486.6

935%

1

128

fp16

replicated

gpu

None

1457.87

20165

138.05%

1

64

fp16

replicated

gpu

pscpu

1595.17

1627.92

1005%

1

128

fp16

replicated

gpu

pscpu

1460.31

2004.91

137.29%

1

64

fp16

replicated

gpu

nccl

1589.09

1786.49

1142%

1

128

fp16

replicated

gpu

nccl

15343

20513

1394%

 

从测试结果看,bs=644090性能与A100是接近的,但是到了bs=128时,差距可以达到30%以上。

文本生成(LLAMA

我们测试了LLAMA 7b文本生成推理任务,用吞吐也就是每秒生成的token数作为评估标准,值越大性能越好。

GPU

model size

precision

batch size

throught(tokens/s)

4090

7b

fp16

1

46.38

A100

7b

fp16

1

46.35

4090

7b

fp16

2

87.85

A100

7b

fp16

2

90.68

 

从测试结果可以看到:

Bs=14090A100差不多,bs=2A100就超过4090了。

图片生成(Stable Diffusion

Stable Diifusion 测试的是WEB UI场景固定sampling step=20生成512*512尺寸图片的时间,时间越短性能越好。测试了Pytorch native以及xformers加速后的生成时间。

 

GPU

加速库

sampling steps

image size

batch size

time(s)

4090

native

20

512*512

1

0.9

A100

native

20

512*512

1

1

4090

xformers

20

512*512

1

0.6

A100

xformers

20

512*512

1

0.8

4090

native

20

512*512

8

6.8

A100

native

20

512*512

8

5.4

4090

xformers

20

512*512

8

4.5

A100

xformers

20

512*512

8

4.1

 

从结果看,在bs=1时,4090性能是优于A100的,但是当bs增大到8时,A100的性能就明显超过4090了。

  

总结

RTX 4090Ada Lovelace架构继承了Hopper架构在AI计算方面的特性,同时搭载了新的第三代RT CoreAI性能和光追算力相比上一代RTX 3090 Ti均提升一倍,单GPU AI算力与A100接近。实际测试4090在小bs推理任务上可以与A100相当,但是首先显存带宽以及GPU间高速通信带宽的缺失,在多卡训练和推理任务上相比A100差距还是会很大。

相关文章
|
6月前
|
人工智能 自然语言处理 开发工具
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
本文介绍统一多模态 Transformer(UMT)在跨模态表示学习中的应用与优化,涵盖模型架构、实现细节与实验效果,探讨其在图文检索、图像生成等任务中的卓越性能。
统一多模态 Transformer 架构在跨模态表示学习中的应用与优化
|
5月前
|
监控 Java API
Spring Boot 3.2 结合 Spring Cloud 微服务架构实操指南 现代分布式应用系统构建实战教程
Spring Boot 3.2 + Spring Cloud 2023.0 微服务架构实践摘要 本文基于Spring Boot 3.2.5和Spring Cloud 2023.0.1最新稳定版本,演示现代微服务架构的构建过程。主要内容包括: 技术栈选择:采用Spring Cloud Netflix Eureka 4.1.0作为服务注册中心,Resilience4j 2.1.0替代Hystrix实现熔断机制,配合OpenFeign和Gateway等组件。 核心实操步骤: 搭建Eureka注册中心服务 构建商品
978 3
|
7月前
|
存储 编解码 Serverless
Serverless架构下的OSS应用:函数计算FC自动处理图片/视频转码(演示水印添加+缩略图生成流水线)
本文介绍基于阿里云函数计算(FC)和对象存储(OSS)构建Serverless媒体处理流水线,解决传统方案资源利用率低、运维复杂、成本高等问题。通过事件驱动机制实现图片水印添加、多规格缩略图生成及视频转码优化,支持毫秒级弹性伸缩与精确计费,提升处理效率并降低成本,适用于高并发媒体处理场景。
393 0
|
3月前
|
人工智能 JavaScript 前端开发
GenSX (不一样的AI应用框架)架构学习指南
GenSX 是一个基于 TypeScript 的函数式 AI 工作流框架,以“函数组合替代图编排”为核心理念。它通过纯函数组件、自动追踪与断点恢复等特性,让开发者用自然代码构建可追溯、易测试的 LLM 应用。支持多模型集成与插件化扩展,兼具灵活性与工程化优势。
328 6
|
4月前
|
人工智能 Cloud Native 中间件
划重点|云栖大会「AI 原生应用架构论坛」看点梳理
本场论坛将系统性阐述 AI 原生应用架构的新范式、演进趋势与技术突破,并分享来自真实生产环境下的一线实践经验与思考。
|
4月前
|
Java API 开发工具
灵码产品演示:软件工程架构分析
本演示展示灵码对复杂软件项目的架构分析与文档生成能力。通过Qwen3模型,结合PlantUML,自动生成系统架构图、微服务时序图,并提取API接口文档,实现高效、智能的代码理解与文档输出。
302 5
|
4月前
|
存储 JSON 数据处理
ClkLog埋点与用户行为分析系统:架构升级与性能全面提升
随着越来越多企业在实际业务中使用 ClkLog,数据规模和分析需求也不断提升,部分用户日活已经超过10万,为了顺应这一趋势,ClkLog 秉持 “开放透明、持续演进”的理念,推出了迄今为止最重要的一次性能优化升级。新版本在大规模数据处理与复杂查询场景中,性能表现实现了跨越式提升。经过多轮研发与严格测试,新版本现已正式上线:在原有付费版 1.0 的基础上架构全面升级,并同步发布全新的 2.0 版本。为用户带来更强的性能与更广的适用场景。
|
4月前
|
机器学习/深度学习 人工智能 vr&ar
H4H:面向AR/VR应用的NPU-CIM异构系统混合卷积-Transformer架构搜索——论文阅读
H4H是一种面向AR/VR应用的混合卷积-Transformer架构,基于NPU-CIM异构系统,通过神经架构搜索实现高效模型设计。该架构结合卷积神经网络(CNN)的局部特征提取与视觉Transformer(ViT)的全局信息处理能力,提升模型性能与效率。通过两阶段增量训练策略,缓解混合模型训练中的梯度冲突问题,并利用异构计算资源优化推理延迟与能耗。实验表明,H4H在相同准确率下显著降低延迟和功耗,为AR/VR设备上的边缘AI推理提供了高效解决方案。
573 0
|
3月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
5月前
|
Web App开发 Linux 虚拟化
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件
326 0
Omnissa Horizon 8 2506 (8.16) - 虚拟桌面基础架构 (VDI) 和应用软件