sklearn中级教程——特征选择

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: sklearn中级教程——特征选择

sklearn中级特征选择教程

在机器学习中,特征选择是一个重要的步骤,它可以帮助我们从原始数据中选择出最具预测性能的特征,以提高模型的准确性和效率。在本教程中,我们将学习如何使用scikit-learn(sklearn)库中的特征选择方法来进行特征选择。

什么是特征选择?

特征选择是从原始特征集中选择出对目标变量具有最大预测能力的特征子集的过程。通过选择相关特征,我们可以降低模型的复杂性、减少过拟合的风险,并提高模型的解释性能。

sklearn中的特征选择方法

sklearn库提供了多种特征选择方法,包括过滤式方法、包裹式方法和嵌入式方法。下面我们将介绍其中一些常用的方法。

1. 方差选择法

方差选择法是一种简单的特征选择方法,它通过选择具有较高方差的特征来进行特征选择。方差选择法适用于特征值是连续型变量的情况。

from sklearn.feature_selection import VarianceThreshold

selector = VarianceThreshold(threshold=0.1)
X_selected = selector.fit_transform(X)

2. 相关系数法

相关系数法基于特征与目标变量之间的相关性来进行特征选择。它可以使用Pearson相关系数、Spearman相关系数或卡方检验等不同的相关性度量方法。

from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2

selector = SelectKBest(chi2, k=5)
X_selected = selector.fit_transform(X, y)

3. 递归特征消除法

递归特征消除法是一种迭代的特征选择方法,它反复训练模型,每次迭代都消除权重最小的特征,直到达到指定的特征数量。

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

estimator = LogisticRegression()
selector = RFE(estimator, n_features_to_select=5)
X_selected = selector.fit_transform(X, y)

4. L1正则化

L1正则化是一种稀疏化特征选择方法,它通过对特征权重进行L1惩罚来实现。L1正则化可以使得部分特征的权重变为0,从而实现特征选择。

from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso

estimator = Lasso()
selector = SelectFromModel(estimator)
X_selected = selector.fit_transform(X, y)

结语

特征选择是机器学习中的重要步骤,它可以帮助我们提高模型的准确性和效率。在本教程中,我们介绍了sklearn库中几种常用的特征选择方法,包括方差选择法、相关系数法、递归特征消除法和L1正则化。通过使用这些方法,我们可以从原始数据中选择出最具预测性能的特征子集,从而提高我们的机器学习模型。

目录
相关文章
|
8月前
|
机器学习/深度学习 算法 Python
CatBoost中级教程:集成学习与模型融合
CatBoost中级教程:集成学习与模型融合【2月更文挑战第13天】
254 3
|
8月前
|
机器学习/深度学习 数据采集 数据可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
数据分享|python分类预测职员离职:逻辑回归、梯度提升、随机森林、XGB、CatBoost、LGBM交叉验证可视化
|
8月前
|
机器学习/深度学习 算法 Python
CatBoost中级教程:自动分类特征处理
CatBoost中级教程:自动分类特征处理【2月更文挑战第9天】
490 1
CatBoost中级教程:自动分类特征处理
|
8月前
|
机器学习/深度学习 算法 Python
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
|
8月前
|
机器学习/深度学习
sklearn中级教程——特征选择
sklearn中级教程——特征选择【1月更文挑战第15篇】
107 0
sklearn中级教程——特征选择
|
8月前
|
机器学习/深度学习 Python
Scikit-Learn 中级教程——模型融合
Scikit-Learn 中级教程——模型融合 【1月更文挑战第16篇】
204 2
|
8月前
|
机器学习/深度学习 前端开发 Python
Scikit-Learn 中级教程——集成学习
Scikit-Learn 中级教程——集成学习
200 0
|
8月前
|
机器学习/深度学习 算法
SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)
SVM算法、朴素贝叶斯算法讲解及对iris数据集分类实战(附源码)
271 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
分类算法中决策树和KNN算法讲解及对iris数据集分类实战(附源码)
分类算法中决策树和KNN算法讲解及对iris数据集分类实战(附源码)
234 0
|
8月前
|
机器学习/深度学习 算法 数据挖掘
回归分析讲解及一元线性回归和逻辑回归对iris数据集分析实战(附源码 超详细)
回归分析讲解及一元线性回归和逻辑回归对iris数据集分析实战(附源码 超详细)
281 0