Scikit-Learn 中级教程——集成学习

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: Scikit-Learn 中级教程——集成学习

Python Scikit-Learn 中级教程:集成学习

集成学习是一种通过组合多个模型的预测结果来提高模型性能的技术。在本篇博客中,我们将深入介绍 Scikit-Learn 中的集成学习方法,包括 Bagging、Boosting 和随机森林,并使用代码进行说明。

1. Bagging(Bootstrap Aggregating)

Bagging 是一种通过构建多个相互独立的模型并将它们的预测结果平均来提高模型性能的方法。在 Scikit-Learn 中,BaggingClassifier 和 BaggingRegressor 分别用于分类和回归问题。

1.1 随机森林

随机森林是 Bagging 的一个特例,它使用决策树作为基础模型。每个基础模型在训练时使用随机抽样的数据和特征,最后通过投票或平均来得到最终预测结果。

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载示例数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 定义随机森林分类器
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)

# 训练模型
rf_model.fit(X_train, y_train)

# 预测
y_pred = rf_model.predict(X_test)

# 计算准确性
accuracy = accuracy_score(y_test, y_pred)
print("随机森林准确性:", accuracy)

2. Boosting

Boosting 是一种通过训练一系列弱学习器(通常是决策树)并根据前一个模型的表现调整下一个模型的权重来提高模型性能的方法。在 Scikit-Learn 中,AdaBoostClassifier 和 GradientBoostingClassifier 分别用于分类问题。

2.1 AdaBoost

AdaBoost 是一种通过对错误分类样本增加权重来调整模型的方法。

from sklearn.ensemble import AdaBoostClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载示例数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 定义AdaBoost分类器
adaboost_model = AdaBoostClassifier(n_estimators=50, random_state=42)

# 训练模型
adaboost_model.fit(X_train, y_train)

# 预测
y_pred = adaboost_model.predict(X_test)

# 计算准确性
accuracy = accuracy_score(y_test, y_pred)
print("AdaBoost准确性:", accuracy)

2.2 Gradient Boosting

Gradient Boosting 是一种通过逐步拟合残差来构建强学习器的方法。

from sklearn.ensemble import GradientBoostingClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载示例数据集
iris = load_iris()
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.2, random_state=42)

# 定义Gradient Boosting分类器
gradient_boost_model = GradientBoostingClassifier(n_estimators=100, random_state=42)

# 训练模型
gradient_boost_model.fit(X_train, y_train)

# 预测
y_pred = gradient_boost_model.predict(X_test)

# 计算准确性
accuracy = accuracy_score(y_test, y_pred)
print("Gradient Boosting准确性:", accuracy)

3. 集成学习的优势

集成学习的优势在于:

  • 提高模型性能:通过组合多个模型的预测结果,集成学习能够显著提高模型的性能。

  • 降低过拟合风险:集成学习可以减轻个别模型的过拟合风险,提高模型的泛化能力。

4. 总结

集成学习是一种强大的技术,能够提高机器学习模型的性能。本篇博客介绍了 Bagging(随机森林)和 Boosting(AdaBoost 和 Gradient Boosting)两类集成学习方法,并提供了使用 Scikit-Learn 的代码示例。在实际应用中,根据数据集和问题的特性选择适当的集成学习方法,将有助于提高模型的准确性和泛化能力。希望这篇博客对你理解和应用集成学习有所帮助!

目录
相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
80 3
|
2月前
|
安全 Java API
【三方服务集成】最新版 | 阿里云短信服务SMS使用教程(包含支持单双参数模板的工具类,拿来即用!)
阿里云短信服务提供API/SDK和控制台调用方式,支持验证码、通知、推广等短信类型。需先注册阿里云账号并实名认证,然后在短信服务控制台申请资质、签名和模板,并创建AccessKey。最后通过Maven引入依赖,使用工具类发送短信验证码。
【三方服务集成】最新版 | 阿里云短信服务SMS使用教程(包含支持单双参数模板的工具类,拿来即用!)
|
3月前
|
测试技术
软件质量保护与测试(第2版)学习总结第十三章 集成测试
本文是《软件质量保护与测试》(第2版)第十三章的学习总结,介绍了集成测试的概念、主要任务、测试层次与原则,以及集成测试的不同策略,包括非渐增式集成和渐增式集成(自顶向下和自底向上),并通过图示详细解释了集成测试的过程。
91 1
软件质量保护与测试(第2版)学习总结第十三章 集成测试
|
3月前
|
存储 Java 开发工具
【三方服务集成】最新版 | 阿里云OSS对象存储服务使用教程(包含OSS工具类优化、自定义阿里云OSS服务starter)
阿里云OSS(Object Storage Service)是一种安全、可靠且成本低廉的云存储服务,支持海量数据存储。用户可通过网络轻松存储和访问各类文件,如文本、图片、音频和视频等。使用OSS后,项目中的文件上传业务无需在服务器本地磁盘存储文件,而是直接上传至OSS,由其管理和保障数据安全。此外,介绍了OSS服务的开通流程、Bucket创建、AccessKey配置及环境变量设置,并提供了Java SDK示例代码,帮助用户快速上手。最后,展示了如何通过自定义starter简化工具类集成,实现便捷的文件上传功能。
【三方服务集成】最新版 | 阿里云OSS对象存储服务使用教程(包含OSS工具类优化、自定义阿里云OSS服务starter)
|
3月前
|
前端开发 Java 程序员
springboot 学习十五:Spring Boot 优雅的集成Swagger2、Knife4j
这篇文章是关于如何在Spring Boot项目中集成Swagger2和Knife4j来生成和美化API接口文档的详细教程。
323 1
|
3月前
|
Java Spring
springboot 学习十一:Spring Boot 优雅的集成 Lombok
这篇文章是关于如何在Spring Boot项目中集成Lombok,以简化JavaBean的编写,避免冗余代码,并提供了相关的配置步骤和常用注解的介绍。
144 0
|
3月前
|
机器学习/深度学习 算法 前端开发
集成学习任务七和八、投票法与bagging学习
集成学习任务七和八、投票法与bagging学习
38 0
|
3月前
|
机器学习/深度学习 算法
【机器学习】迅速了解什么是集成学习
【机器学习】迅速了解什么是集成学习
|
3月前
|
Java Maven Docker
gitlab-ci 集成 k3s 部署spring boot 应用
gitlab-ci 集成 k3s 部署spring boot 应用
|
2月前
|
消息中间件 监控 Java
您是否已集成 Spring Boot 与 ActiveMQ?
您是否已集成 Spring Boot 与 ActiveMQ?
61 0