使用Kafka实现Java异步更新通知解决Redis与MySQL数据不一致

本文涉及的产品
云数据库 Redis 版,社区版 2GB
推荐场景:
搭建游戏排行榜
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: 使用Kafka实现Java异步更新通知解决Redis与MySQL数据不一致

使用Kafka实现Java异步更新通知解决Redis与MySQL数据不一致

背景

在高并发的应用场景中,秒杀系统等业务可能导致Redis与MySQL中的数据不一致。通过异步更新通知,我们可以及时发现不一致并采取相应措施,确保系统的稳定性和一致性。

设计思路

我们将设计一个Java程序,定期巡检Redis和MySQL中的库存数据。当发现不一致时,通过Kafka发送异步通知,以便其他系统及时进行处理。

1. Maven依赖

首先,确保在项目的pom.xml文件中添加以下Maven依赖:

<dependencies>
    <!-- MySQL连接驱动 -->
    <dependency>
        <groupId>mysql</groupId>
        <artifactId>mysql-connector-java</artifactId>
        <version>8.0.23</version>
    </dependency>
    <!-- Jedis:Java连接Redis的客户端库 -->
    <dependency>
        <groupId>redis.clients</groupId>
        <artifactId>jedis</artifactId>
        <version>3.7.0</version>
    </dependency>
    <!-- Kafka客户端 -->
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>2.8.1</version>
    </dependency>
</dependencies>
2. Java代码实现
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import redis.clients.jedis.Jedis;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.Properties;
import java.util.Timer;
import java.util.TimerTask;
public class AsyncInventoryNotifier {
    // Redis连接信息
    private static final String REDIS_HOST = "localhost";
    private static final int REDIS_PORT = 6379;
    private static final int REDIS_DB = 0;
    // MySQL连接信息
    private static final String MYSQL_URL = "jdbc:mysql://localhost:3306/ecommerce";
    private static final String MYSQL_USER = "user";
    private static final String MYSQL_PASSWORD = "password";
    // Kafka连接信息
    private static final String KAFKA_BROKER = "localhost:9092";
    private static final String KAFKA_TOPIC = "inventory_updates";
    public static void main(String[] args) {
        // 创建定时任务
        Timer timer = new Timer();
        timer.schedule(new InventoryNotifierTask(), 0, 30 * 60 * 1000); // 每30分钟执行一次
    }
    static class InventoryNotifierTask extends TimerTask {
        @Override
        public void run() {
            System.out.println("Starting async inventory notification...");
            try {
                // 连接Redis
                Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT);
                jedis.select(REDIS_DB);
                // 连接MySQL
                Connection mysqlConnection = DriverManager.getConnection(MYSQL_URL, MYSQL_USER, MYSQL_PASSWORD);
                // 连接Kafka
                Properties kafkaProps = new Properties();
                kafkaProps.put("bootstrap.servers", KAFKA_BROKER);
                kafkaProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                kafkaProps.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
                KafkaProducer<String, String> producer = new KafkaProducer<>(kafkaProps);
                // 查询所有商品ID
                PreparedStatement preparedStatement = mysqlConnection.prepareStatement("SELECT id FROM products");
                ResultSet resultSet = preparedStatement.executeQuery();
                while (resultSet.next()) {
                    int productId = resultSet.getInt("id");
                    // 从Redis获取缓存库存
                    int redisStock = Integer.parseInt(jedis.get("product:" + productId + ":stock"));
                    // 从MySQL获取实际库存
                    PreparedStatement stockStatement = mysqlConnection.prepareStatement("SELECT stock FROM products WHERE id = ?");
                    stockStatement.setInt(1, productId);
                    ResultSet stockResultSet = stockStatement.executeQuery();
                    int mysqlStock = 0;
                    if (stockResultSet.next()) {
                        mysqlStock = stockResultSet.getInt("stock");
                    }
                    // 检测库存一致性
                    if (redisStock != mysqlStock) {
                        System.out.println("Inventory inconsistency detected for product " + productId +
                                ". Redis: " + redisStock + ", MySQL: " + mysqlStock);
                        // 发送异步通知到Kafka
                        ProducerRecord<String, String> record = new ProducerRecord<>(KAFKA_TOPIC, String.valueOf(productId), "inventory_inconsistency");
                        producer.send(record);
                        System.out.println("Async notification sent to Kafka.");
                    }
                }
                // 关闭连接
                jedis.close();
                mysqlConnection.close();
                producer.close();
            } catch (SQLException e) {
                System.err.println("Error during async inventory notification: " + e.getMessage());
            }
        }
    }
}

代码设计思路解释

  1. 连接到Redis、MySQL和Kafka:
Jedis jedis = new Jedis(REDIS_HOST, REDIS_PORT);
jedis.select(REDIS_DB);
Connection mysqlConnection = DriverManager.getConnection(MYSQL_URL, MYSQL_USER, MYSQL_PASSWORD);
Properties kafkaProps = new Properties();
kafkaProps.put("bootstrap.servers", KAFKA_BROKER);
kafkaProps.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
kafkaProps.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> producer = new KafkaProducer<>(kafkaProps);
  1. 查询商品ID并检测库存一致性:
PreparedStatement preparedStatement = mysqlConnection.prepareStatement("SELECT id FROM products");
ResultSet resultSet = preparedStatement.executeQuery();
while (resultSet.next()) {
    int productId = resultSet.getInt("id");
    int redisStock = Integer.parseInt(jedis.get("product:" + productId + ":stock"));
    PreparedStatement stockStatement = mysqlConnection.prepareStatement("SELECT stock FROM products WHERE id = ?");
    stockStatement.setInt(1, productId);
    ResultSet stockResultSet = stockStatement.executeQuery();
    int mysqlStock = 0;
    if (stockResultSet.next()) {
        mysqlStock = stockResultSet.getInt("stock");
    }
    if (redisStock != mysqlStock) {
        // 发送异步通知到Kafka
        ProducerRecord<String, String> record = new ProducerRecord<>(KAFKA_TOPIC, String.valueOf(productId), "inventory_inconsistency");
        producer.send(record

);

System.out.println(“Async notification sent to Kafka.”);

}

}

3. **异步通知:**
```java
ProducerRecord<String, String> record = new ProducerRecord<>(KAFKA_TOPIC, String.valueOf(productId), "inventory_inconsistency");
producer.send(record);
System.out.println("Async notification sent to Kafka.");
  1. 关闭连接:
jedis.close();
mysqlConnection.close();
producer.close();

通过这个异步更新通知的设计,我们能够在检测到Redis与MySQL数据不一致的情况时,及时发送异步通知到Kafka,以便其他系统能够实时处理这些不一致性。这种设计适用于高并发应用场景,可以在实际生产环境中部署并根据业务需求调整执行频率。

相关文章
|
3天前
|
缓存 NoSQL 关系型数据库
13- Redis和Mysql如何保证数据⼀致?
该内容讨论了保证Redis和MySQL数据一致性的几种策略。首先提到的两种方法存在不一致风险:先更新MySQL再更新Redis,或先删Redis再更新MySQL。第三种方案是通过MQ异步同步以达到最终一致性,适用于一致性要求较高的场景。项目中根据不同业务需求选择不同方案,如对一致性要求不高的情况不做处理,时效性数据设置过期时间,高一致性需求则使用MQ确保同步,最严格的情况可能涉及分布式事务(如Seata的TCC模式)。
23 6
|
3天前
|
NoSQL Redis
05- Redis的数据淘汰策略有哪些 ?
Redis 提供了 8 种数据淘汰策略:挥发性 LRU、LFU 和 TTL(针对有过期时间的数据),挥发性随机淘汰,以及全库的 LRU、LFU 随机淘汰,用于在内存不足时选择删除。另外,还有不淘汰策略(no-eviction),允许新写入操作报错而非删除数据。
9 1
|
19天前
Mybatis+mysql动态分页查询数据案例——分页工具类(Page.java)
Mybatis+mysql动态分页查询数据案例——分页工具类(Page.java)
18 1
|
10天前
|
NoSQL Redis
Redis事务:保证数据操作的一致性和可靠性
Redis事务:保证数据操作的一致性和可靠性
|
19天前
Mybatis+mysql动态分页查询数据案例——工具类(MybatisUtil.java)
Mybatis+mysql动态分页查询数据案例——工具类(MybatisUtil.java)
14 1
|
2天前
|
运维 NoSQL 算法
Java开发-深入理解Redis Cluster的工作原理
综上所述,Redis Cluster通过数据分片、节点发现、主从复制、数据迁移、故障检测和客户端路由等机制,实现了一个分布式的、高可用的Redis解决方案。它允许数据分布在多个节点上,提供了自动故障转移和读写分离的功能,适用于需要大规模、高性能、高可用性的应用场景。
9 0
|
6天前
|
存储 缓存 NoSQL
Java手撸一个缓存类似Redis
`LocalExpiringCache`是Java实现的一个本地缓存类,使用ConcurrentHashMap存储键值对,并通过ScheduledExecutorService定时清理过期的缓存项。类中包含`put`、`get`、`remove`等方法操作缓存,并有`clearCache`方法来清除过期的缓存条目。初始化时,会注册一个定时任务,每500毫秒检查并清理一次过期缓存。单例模式确保了类的唯一实例。
10 0
|
10天前
|
NoSQL 安全 网络安全
保护Redis:建立铁壁般的安全防线,守护你的数据财富
保护Redis:建立铁壁般的安全防线,守护你的数据财富
|
10天前
|
消息中间件 存储 NoSQL
Redis Stream: 实时消息处理的利器,让你的数据流畅又可靠!
Redis Stream: 实时消息处理的利器,让你的数据流畅又可靠!
|
10天前
|
NoSQL 安全 网络安全
Redis连接:加速数据访问与保障安全传输的关键
Redis连接:加速数据访问与保障安全传输的关键

热门文章

最新文章