Scipy 高级教程——高级插值和拟合

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: Scipy 高级教程——高级插值和拟合【1月更文挑战第13篇】

Python Scipy 高级教程:高级插值和拟合

Scipy 提供了强大的插值和拟合工具,用于处理数据之间的关系。本篇博客将深入介绍 Scipy 中的高级插值和拟合方法,并通过实例演示如何应用这些工具。

1. 高级插值方法

在插值中,我们通常会使用 interp1d 函数,但 Scipy 还提供了一些高级插值方法,如 B 样条插值和样条插值。

B 样条插值

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import BSpline

# 生成一组带噪声的数据
x = np.linspace(0, 10, 10)
y = np.sin(x) + np.random.normal(0, 0.1, 10)

# 使用 B 样条插值
spl = BSpline(x, y, 3)  # 3阶 B 样条插值

# 绘制原始数据和插值结果
x_new = np.linspace(0, 10, 100)
y_new = spl(x_new)

plt.scatter(x, y, label='原始数据')
plt.plot(x_new, y_new, label='B 样条插值', color='red')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('B 样条插值')
plt.show()

样条插值

from scipy.interpolate import CubicSpline

# 使用样条插值
cs = CubicSpline(x, y)

# 绘制原始数据和插值结果
y_cs = cs(x_new)

plt.scatter(x, y, label='原始数据')
plt.plot(x_new, y_cs, label='样条插值', color='green')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('样条插值')
plt.show()

2. 高级拟合方法

非线性最小二乘拟合

from scipy.optimize import curve_fit

# 定义拟合函数
def func(x, a, b, c):
    return a * np.exp(-b * x) + c

# 生成一组带噪声的数据
x = np.linspace(0, 4, 50)
y = func(x, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(x))

# 使用非线性最小二乘拟合
popt, pcov = curve_fit(func, x, y)

# 绘制原始数据和拟合结果
y_fit = func(x, *popt)

plt.scatter(x, y, label='原始数据')
plt.plot(x, y_fit, label='拟合结果', color='orange')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('非线性最小二乘拟合')
plt.show()

高阶多项式拟合

# 生成一组带噪声的数据
x = np.linspace(0, 4, 50)
y = 0.5 * x**3 - 2 * x**2 + 1.5 * x + 5 + 10 * np.random.normal(size=len(x))

# 使用高阶多项式拟合
coefficients = np.polyfit(x, y, deg=10)

# 构造多项式函数
poly_fit = np.poly1d(coefficients)

# 绘制原始数据和拟合结果
y_poly_fit = poly_fit(x)

plt.scatter(x, y, label='原始数据')
plt.plot(x, y_poly_fit, label='多项式拟合', color='purple')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('高阶多项式拟合')
plt.show()

3. 总结

通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的高级插值和拟合工具。这些工具在处理实际数据中的噪声、不规则性和复杂关系时非常有用。在实际应用中,根据数据特点选择合适的插值或拟合方法将有助于提高模型的准确性和可靠性。希望这篇博客对你有所帮助!

目录
相关文章
|
1月前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
74 8
|
1月前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
132 7
|
1月前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
52 4
|
1月前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
52 5
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之显著性检验:介绍显著性检验的基本概念、目的及在SciPy中的实现方法。通过scipy.stats模块进行显著性检验,包括正态性检验(使用偏度和峰度),并提供代码示例展示如何计算数据集的偏度和峰度。
40 2
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 9
SciPy 教程之 Scipy 显著性检验第9部分,介绍了显著性检验的基本概念、作用及原理,通过样本信息判断假设是否成立。着重讲解了使用scipy.stats模块进行显著性检验的方法,包括正态性检验中的偏度和峰度计算,以及如何利用normaltest()函数评估数据是否符合正态分布。示例代码展示了如何计算一组随机数的偏度和峰度。
36 1
|
2月前
|
BI Python
SciPy 教程 之 Scipy 显著性检验 8
本教程介绍SciPy中显著性检验的应用,包括如何利用scipy.stats模块进行显著性检验,以判断样本与总体假设间的差异是否显著。通过示例代码展示了如何使用describe()函数获取数组的统计描述信息,如观测次数、最小最大值、均值、方差等。
39 1
|
2月前
|
Python
SciPy 教程 之 Scipy 显著性检验 6
显著性检验是统计学中用于判断样本与总体假设间是否存在显著差异的方法。SciPy的scipy.stats模块提供了执行显著性检验的工具,如T检验,用于比较两组数据的均值是否来自同一分布。通过ttest_ind()函数,可以获取两样本的t统计量和p值,进而判断差异是否显著。示例代码展示了如何使用该函数进行T检验并输出结果。
39 1
|
3月前
|
数据可视化 IDE 开发工具
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
【Python篇】PyQt5 超详细教程——由入门到精通(中篇二)
428 13
|
3月前
|
监控 数据可视化 搜索推荐
【Python篇】matplotlib超详细教程-由入门到精通(下篇)2
【Python篇】matplotlib超详细教程-由入门到精通(下篇)
54 8