Scipy 高级教程——高级插值和拟合

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Scipy 高级教程——高级插值和拟合【1月更文挑战第13篇】

Python Scipy 高级教程:高级插值和拟合

Scipy 提供了强大的插值和拟合工具,用于处理数据之间的关系。本篇博客将深入介绍 Scipy 中的高级插值和拟合方法,并通过实例演示如何应用这些工具。

1. 高级插值方法

在插值中,我们通常会使用 interp1d 函数,但 Scipy 还提供了一些高级插值方法,如 B 样条插值和样条插值。

B 样条插值

import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import BSpline

# 生成一组带噪声的数据
x = np.linspace(0, 10, 10)
y = np.sin(x) + np.random.normal(0, 0.1, 10)

# 使用 B 样条插值
spl = BSpline(x, y, 3)  # 3阶 B 样条插值

# 绘制原始数据和插值结果
x_new = np.linspace(0, 10, 100)
y_new = spl(x_new)

plt.scatter(x, y, label='原始数据')
plt.plot(x_new, y_new, label='B 样条插值', color='red')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('B 样条插值')
plt.show()

样条插值

from scipy.interpolate import CubicSpline

# 使用样条插值
cs = CubicSpline(x, y)

# 绘制原始数据和插值结果
y_cs = cs(x_new)

plt.scatter(x, y, label='原始数据')
plt.plot(x_new, y_cs, label='样条插值', color='green')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('样条插值')
plt.show()

2. 高级拟合方法

非线性最小二乘拟合

from scipy.optimize import curve_fit

# 定义拟合函数
def func(x, a, b, c):
    return a * np.exp(-b * x) + c

# 生成一组带噪声的数据
x = np.linspace(0, 4, 50)
y = func(x, 2.5, 1.3, 0.5) + 0.2 * np.random.normal(size=len(x))

# 使用非线性最小二乘拟合
popt, pcov = curve_fit(func, x, y)

# 绘制原始数据和拟合结果
y_fit = func(x, *popt)

plt.scatter(x, y, label='原始数据')
plt.plot(x, y_fit, label='拟合结果', color='orange')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('非线性最小二乘拟合')
plt.show()

高阶多项式拟合

# 生成一组带噪声的数据
x = np.linspace(0, 4, 50)
y = 0.5 * x**3 - 2 * x**2 + 1.5 * x + 5 + 10 * np.random.normal(size=len(x))

# 使用高阶多项式拟合
coefficients = np.polyfit(x, y, deg=10)

# 构造多项式函数
poly_fit = np.poly1d(coefficients)

# 绘制原始数据和拟合结果
y_poly_fit = poly_fit(x)

plt.scatter(x, y, label='原始数据')
plt.plot(x, y_poly_fit, label='多项式拟合', color='purple')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('高阶多项式拟合')
plt.show()

3. 总结

通过本篇博客的介绍,你可以更好地理解和使用 Scipy 中的高级插值和拟合工具。这些工具在处理实际数据中的噪声、不规则性和复杂关系时非常有用。在实际应用中,根据数据特点选择合适的插值或拟合方法将有助于提高模型的准确性和可靠性。希望这篇博客对你有所帮助!

目录
相关文章
|
1月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
121 1
|
2月前
|
数据采集 存储 XML
Python爬虫技术:从基础到实战的完整教程
最后强调: 父母法律法规限制下进行网络抓取活动; 不得侵犯他人版权隐私利益; 同时也要注意个人安全防止泄露敏感信息.
679 19
|
2月前
|
数据采集 存储 JSON
使用Python获取1688商品详情的教程
本教程介绍如何使用Python爬取1688商品详情信息,涵盖环境配置、代码编写、数据处理及合法合规注意事项,助你快速掌握商品数据抓取与保存技巧。
|
4月前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
过三色刷脸技术,过三色刷脸技术教程,插件过人脸python分享学习
三色刷脸技术是基于RGB三通道分离的人脸特征提取方法,通过分析人脸在不同颜色通道的特征差异
|
4月前
|
XML Linux 区块链
Python提取Word表格数据教程(含.doc/.docx)
本文介绍了使用LibreOffice和python-docx库处理DOC文档表格的方法。首先需安装LibreOffice进行DOC到DOCX的格式转换,然后通过python-docx读取和修改表格数据。文中提供了详细的代码示例,包括格式转换函数、表格读取函数以及修改保存功能。该方法适用于Windows和Linux系统,解决了老旧DOC格式文档的处理难题,为需要处理历史文档的用户提供了实用解决方案。
416 1
|
3月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
256 0
|
3月前
|
数据采集 索引 Python
Python Slice函数使用教程 - 详解与示例 | Python切片操作指南
Python中的`slice()`函数用于创建切片对象,以便对序列(如列表、字符串、元组)进行高效切片操作。它支持指定起始索引、结束索引和步长,提升代码可读性和灵活性。
|
5月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
649 1
|
5月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
377 0

热门文章

最新文章

推荐镜像

更多