leetcode-675:为高尔夫比赛砍树 (最短路径算法bfs,dijkstra,A*)

简介: leetcode-675:为高尔夫比赛砍树 (最短路径算法bfs,dijkstra,A*)

题目

题目连接

你被请来给一个要举办高尔夫比赛的树林砍树。树林由一个 m x n 的矩阵表示, 在这个矩阵中:

0 表示障碍,无法触碰

1 表示地面,可以行走

比 1 大的数 表示有树的单元格,可以行走,数值表示树的高度

每一步,你都可以向上、下、左、右四个方向之一移动一个单位,如果你站的地方有一棵树,那么你可以决定是否要砍倒它。

你需要按照树的高度从低向高砍掉所有的树,每砍过一颗树,该单元格的值变为 1(即变为地面)。

你将从 (0, 0) 点开始工作,返回你砍完所有树需要走的最小步数。 如果你无法砍完所有的树,返回 -1 。

可以保证的是,没有两棵树的高度是相同的,并且你至少需要砍倒一棵树。

示例 1:

输入:forest = [[1,2,3],[0,0,4],[7,6,5]]
输出:6
解释:沿着上面的路径,你可以用 6 步,按从最矮到最高的顺序砍掉这些树。

示例 2:

输入:forest = [[1,2,3],[0,0,0],[7,6,5]]
输出:-1
解释:由于中间一行被障碍阻塞,无法访问最下面一行中的树。

示例 3:

输入:forest = [[2,3,4],[0,0,5],[8,7,6]]
输出:6
解释:可以按与示例 1 相同的路径来砍掉所有的树。
(0,0) 位置的树,可以直接砍去,不用算步数。

解题

参考链接

方法一:bfs

可以将树从低到高排序,这样就这样每次要走的,起始点和目的点

然后求起始点和目的点最短路径(bfs)即可

所有最短路径之和就是结果

class Solution {
public:
    int m,n;
    vector<vector<int>> dirs={{-1,0},{0,-1},{1,0},{0,1}};
    int bfs(vector<vector<int>>& forest,int srcx,int srcy,int dstx,int dsty){
        if(srcx==dstx&&srcy==dsty) return 0;
        queue<pair<int,int>> q;
        q.emplace(srcx,srcy);
        vector<vector<bool>> visited(m,vector<bool>(n,false));
        visited[srcx][srcy]=true;
        int depth=0;
        while(!q.empty()){
            int l=q.size();
            while(l--){
                auto [x,y]=q.front();
                q.pop();
                // visited[x][y]=true;//出队的时候才标记,可能会导致重复入队
                if(x==dstx&&y==dsty){
                    return depth;
                }
                for(vector<int>& dir:dirs){
                    int nx=x+dir[0];
                    int ny=y+dir[1];
                    if(nx<0||nx>=m||ny<0||ny>=n||forest[nx][ny]==0||visited[nx][ny]) continue;
                    q.emplace(nx,ny);
                    visited[nx][ny]=true;
                }
            }
            depth++;  
        }
        return -1;
    }
    int cutOffTree(vector<vector<int>>& forest) {
        m=forest.size(),n=forest[0].size();
        vector<pair<int,int>> paths;
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(forest[i][j]>=2){
                    paths.emplace_back(i,j);
                }
            }
        }
        sort(paths.begin(),paths.end(),[&](pair<int,int>&a,pair<int,int>&b){
            return forest[a.first][a.second]<forest[b.first][b.second];
        });
        int res=0;
        int srcx=0,srcy=0;
        for(int i=0;i<paths.size();i++){
            auto [dstx,dsty]=paths[i];
            int step=bfs(forest,srcx,srcy,dstx,dsty);
            if(step==-1) return -1;
            res+=step;
            srcx=dstx;
            srcy=dsty;
        }
        return res;
    }
};

方法二:Dijkstra 算法

也是采用bfs的方法,只不过用【优化队列,每次取出路径最小(把 pair(路径,idx),放入优先队列即可)】的方法, 来取代方法一中的,【层次遍历+每层路径+1】的方法。

在性能上,与方法一来说,其实差不多的

方法三:A* 启发式搜索算法

与Dijstra基本上是一样的,但是 额外记录一个cost,通过优先队列,每次选取cost小的

class Solution {
public:
    int m,n;
    int dirs[4][2]={{-1,0},{1,0},{0,-1},{0,1}};
    int bfs(vector<vector<int>>& forest,int srcx,int srcy,int dstx,int dsty){
        if(srcx==dstx&&srcy==dsty) return 0;
        vector<vector<int>> costed(m,vector<int>(n,INT_MAX));
        costed[srcx][srcy]=abs(dstx-srcx)+abs(dsty-srcy);
        priority_queue<tuple<int,int,int,int>,vector<tuple<int,int,int,int>>,greater<tuple<int,int,int,int>>> q;
        q.emplace(costed[srcx][srcy],0,srcx,srcy);
        while(!q.empty()){
            auto [cost,dist,x,y]=q.top();
            q.pop();
            if(x==dstx&&y==dsty) return dist;
            for(int i=0;i<4;i++){
                int nx=x+dirs[i][0];
                int ny=y+dirs[i][1];
                if(nx<0||nx>=m||ny<0||ny>=n||forest[nx][ny]==0) continue;
                int ncost=dist+abs(nx-dstx)+abs(ny-dsty);
                if(ncost<costed[nx][ny]){
                    q.emplace(ncost,dist+1,nx,ny);
                    costed[nx][ny]=ncost;
                }
            }
        }
        return -1;
    }
    int cutOffTree(vector<vector<int>>& forest) {
        m=forest.size(),n=forest[0].size();
        vector<pair<int,int>> paths;
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(forest[i][j]>=2){
                    paths.emplace_back(i,j);
                }
            }
        }
        sort(paths.begin(),paths.end(),[&](pair<int,int>&a,pair<int,int>&b){
            return forest[a.first][a.second]<forest[b.first][b.second];
        });
        int res=0;
        int srcx=0,srcy=0;
        for(int i=0;i<paths.size();i++){
            auto [dstx,dsty]=paths[i];
            int step=bfs(forest,srcx,srcy,dstx,dsty);
            if(step==-1) return -1;
            res+=step;
            srcx=dstx;
            srcy=dsty;
        }
        return res;
    }
};
相关文章
|
22天前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
22天前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
56 17
|
17天前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
46 1
|
1月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
55 7
|
17天前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
35 0
|
3月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
128 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
8月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
263 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
3月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
104 3
 算法系列之数据结构-Huffman树
|
4月前
|
存储 算法
算法系列之搜索算法-广度优先搜索BFS
广度优先搜索(BFS)是一种非常强大的算法,特别适用于解决最短路径、层次遍历和连通性问题。在面试中,掌握BFS的基本实现和应用场景,能够帮助你高效解决许多与图或树相关的问题。
197 1
算法系列之搜索算法-广度优先搜索BFS
|
4月前
|
存储 算法 测试技术
【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)
【狂热算法篇】探秘图论之 Floyd 算法:解锁最短路径的神秘密码(通俗易懂版)

热门文章

最新文章