leetcode-1034:边界着色

简介: leetcode-1034:边界着色

题目

题目链接

给你一个大小为 m x n 的整数矩阵 grid ,表示一个网格。另给你三个整数 row、col 和 color 。网格中的每个值表示该位置处的网格块的颜色。

当两个网格块的颜色相同,而且在四个方向中任意一个方向上相邻时,它们属于同一 连通分量 。

连通分量的边界 是指连通分量中的所有与不在分量中的网格块相邻(四个方向上)的所有网格块,或者在网格的边界上(第一行/列或最后一行/列)的所有网格块。

请你使用指定颜色 color 为所有包含网格块 grid[row][col] 的 连通分量的边界 进行着色,并返回最终的网格 grid 。

示例 1:

输入:grid = [[1,1],[1,2]], row = 0, col = 0, color = 3
输出:[[3,3],[3,2]]

示例 2:

输入:grid = [[1,2,2],[2,3,2]], row = 0, col = 1, color = 3
输出:[[1,3,3],[2,3,3]]

示例 3:

输入:grid = [[1,1,1],[1,1,1],[1,1,1]], row = 1, col = 1, color = 2
输出:[[2,2,2],[2,1,2],[2,2,2]]

解题

方法一:BFS

参考链接

我们要求连通域的边界,因此要知道连通域,所以遍历连通域,判断4个方向是否出现(1.矩阵边界2.不同颜色的格子),如果是,那么就是边界。

因此先判断连通域(1.不能超过矩阵边界 2.有4个任意方向有相邻颜色的格子) ,通过其他格子判断出。

判断,连通域边界,首先本身就是要连通域。如果4个方向都是连通域格子,那么就是连通域内部,不是连通域边界。

如果4个方向不全是连通域格子(当前格子是连通域格子),那么就是边界。

代码

class Solution {
public:
    vector<vector<int>> colorBorder(vector<vector<int>>& grid, int row, int col, int color) {
        int m=grid.size(),n=grid[0].size();
        vector<vector<int>> res(m,vector<int>(n));
        vector<vector<int>> dirs={{1,0},{-1,0},{0,1},{0,-1}};
        queue<vector<int>> queue;
        queue.push({row,col});//从连通域中初始的格子开始遍历
        while(!queue.empty()){
            //获得当前格子的x,y坐标,以及初始化计数cnt
            vector<int> poll=queue.front();
            queue.pop();
            int x=poll[0],y=poll[1],cnt=0;
            //判断4领域的连通域个数:遍历当前格子的4个方向,如果4个方向都是连通格子,那么值不变,如果是边界,那么就填充color
            for(vector<int>& dir:dirs){
                int nx=x+dir[0],ny=y+dir[1];
                if(nx<0||nx>=m||ny<0||ny>=n) continue;
                if(grid[x][y]!=grid[nx][ny]) continue;
                else cnt++;
                if(res[nx][ny]==0){ //这个格子之前没有遍历过,就加入队列中
                    queue.push({nx,ny});
                }
            }
            res[x][y]=cnt==4?grid[x][y]:color;
        }
        //给其余格子填充原来的原色
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(res[i][j]==0) res[i][j]=grid[i][j];
            }
        }
        return res;
    }
};

代码分步解释

这个循环中,就是 判断连通域的。

1.主要是作,判断4邻域的连通域。

2.统计当前x,y的4邻域的连通域个数

for(vector<int>& dir:dirs)

下面这个循环是判断 连通域的边界的

因为循环的内容就是连通域的格子,判断当前格子是否为连通域

while(!queue.empty())

另外补充知识

这用到了c++17的 structured bindings特性 (可以返回多个值)

queue <pair<int, int>> q;
q.emplace(pair < int, int > {row, col});
auto[x, y] = q.front();


相关文章
图解LeetCode——1145. 二叉树着色游戏
图解LeetCode——1145. 二叉树着色游戏
109 0
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
57 6
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 26. 树的子结构
这篇文章提供了解决LeetCode上"剑指Offer 26. 树的子结构"问题的Python代码实现和解析,判断一棵树B是否是另一棵树A的子结构。
52 4
|
3月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
118 2
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
19 1
|
2月前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
3月前
|
索引 Python
【Leetcode刷题Python】从列表list中创建一颗二叉树
本文介绍了如何使用Python递归函数从列表中创建二叉树,其中每个节点的左右子节点索引分别是当前节点索引的2倍加1和2倍加2。
61 7
|
3月前
|
Python
【Leetcode刷题Python】剑指 Offer 22. 链表中倒数第k个节点
Leetcode题目"剑指 Offer 22. 链表中倒数第k个节点"的Python解决方案,使用双指针法找到并返回链表中倒数第k个节点。
54 5