题目
给定两个大小分别为 m
和 n
的正序(从小到大)数组 nums1
和 nums2
。请你找出并返回这两个正序数组的 中位数 。
示例 1:
输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例 2:
输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
示例 3:
输入:nums1 = [0,0], nums2 = [0,0] 输出:0.00000
示例 4:
输入:nums1 = [], nums2 = [1] 输出:1.00000
示例 5:
输入:nums1 = [2], nums2 = [] 输出:2.00000
解题
方法一:合并+排序
但是这种方法一般面试时候可能不给用
class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: num = sorted(nums1+nums2) l = len(num) if l%2==1: return num[l//2] else: return (num[l//2-1]+num[l//2])/2
方法一:二分查找
class Solution: def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float: def getKthElement(k): """ - 主要思路:要找到第 k (k>1) 小的元素,那么就取 pivot1 = nums1[k/2-1] 和 pivot2 = nums2[k/2-1] 进行比较 - 这里的 "/" 表示整除 - nums1 中小于等于 pivot1 的元素有 nums1[0 .. k/2-2] 共计 k/2-1 个 - nums2 中小于等于 pivot2 的元素有 nums2[0 .. k/2-2] 共计 k/2-1 个 - 取 pivot = min(pivot1, pivot2),两个数组中小于等于 pivot 的元素共计不会超过 (k/2-1) + (k/2-1) <= k-2 个 - 这样 pivot 本身最大也只能是第 k-1 小的元素 - 如果 pivot = pivot1,那么 nums1[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums1 数组 - 如果 pivot = pivot2,那么 nums2[0 .. k/2-1] 都不可能是第 k 小的元素。把这些元素全部 "删除",剩下的作为新的 nums2 数组 - 由于我们 "删除" 了一些元素(这些元素都比第 k 小的元素要小),因此需要修改 k 的值,减去删除的数的个数 """ index1, index2 = 0, 0 while True: # 特殊情况 if index1 == m: return nums2[index2 + k - 1] if index2 == n: return nums1[index1 + k - 1] if k == 1: return min(nums1[index1], nums2[index2]) # 正常情况 newIndex1 = min(index1 + k // 2 - 1, m - 1) newIndex2 = min(index2 + k // 2 - 1, n - 1) pivot1, pivot2 = nums1[newIndex1], nums2[newIndex2] if pivot1 <= pivot2: #这个等号不加也没事 k -= newIndex1 - index1 + 1 index1 = newIndex1 + 1 else: k -= newIndex2 - index2 + 1 index2 = newIndex2 + 1 m, n = len(nums1), len(nums2) totalLength = m + n if totalLength % 2 == 1: return getKthElement((totalLength + 1) // 2) else: return (getKthElement(totalLength // 2) + getKthElement(totalLength // 2 + 1)) / 2