leetcode-707:设计链表

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: leetcode-707:设计链表

题目

题目链接

设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:val 和 next。val 是当前节点的值,next 是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev 以指示链表中的上一个节点。假设链表中的所有节点都是 0-index 的。

在链表类中实现这些功能:

  • get(index):获取链表中第 index 个节点的值。如果索引无效,则返回-1。
  • addAtHead(val):在链表的第一个元素之前添加一个值为 val 的节点。插入后,新节点将成为链表的第一个节点。
  • addAtTail(val):将值为 val 的节点追加到链表的最后一个元素。
  • addAtIndex(index,val):在链表中的第 index 个节点之前添加值为 val 的节点。如果 index 等于链表的长度,则该节点将附加到链表的末尾。如果 index 大于链表长度,则不会插入节点。如果index小于0,则在头部插入节点。
  • deleteAtIndex(index):如果索引 index 有效,则删除链表中的第 index 个节点。

示例:

MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1,2);   //链表变为1-> 2-> 3
linkedList.get(1);            //返回2
linkedList.deleteAtIndex(1);  //现在链表是1-> 3
linkedList.get(1);            //返回3

解题:

看上面的示例就这可以知道,linkedList.addAtIndex(1,2)是要在索引为1的地方添加val=2的节点,也就是说当前节点要遍历到索引为0的位置。

linkedList.get(1)而这个方法,是要获得索引为1的地方的节点值,所以要遍历到索引为1的地方。因此可以看见在get的函数里面,for _ in range(index + 1)遍历中还要额外加一个1。

get中index 不能取到self.size,因为遍历中额外加1了。

addAtIndex中,index可以取到self.size,因为我们可以遍历到链表尾部,在尾部添加

deleteAtIndex中,index不能取到self.size,如果要删除尾节点,只要遍历到self.size-1就行了。

方法一:单链表

python解法

class ListNode:
    def __init__(self, x):
        self.val = x
        self.next = None
class MyLinkedList:
    def __init__(self):
        self.size = 0
        self.head = ListNode(0)  # sentinel node as pseudo-head
    def get(self, index: int) -> int:
        """
        Get the value of the index-th node in the linked list. If the index is invalid, return -1.
        """
        # if index is invalid
        if index < 0 or index >= self.size:
            return -1
        curr = self.head
        # index steps needed 
        # to move from sentinel node to wanted index
        for _ in range(index + 1):
            curr = curr.next
        return curr.val
    def addAtHead(self, val: int) -> None:
        """
        Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
        """
        self.addAtIndex(0, val)
    def addAtTail(self, val: int) -> None:
        """
        Append a node of value val to the last element of the linked list.
        """
        self.addAtIndex(self.size, val)
    def addAtIndex(self, index: int, val: int) -> None:
        """
        Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
        """
        # If index is greater than the length, 
        # the node will not be inserted.
        if index > self.size:
            return
        # [so weird] If index is negative, 
        # the node will be inserted at the head of the list.
        if index < 0:
            index = 0
        self.size += 1
        # find predecessor of the node to be added
        pred = self.head
        for _ in range(index):
            pred = pred.next
        # node to be added
        to_add = ListNode(val)
        # insertion itself
        to_add.next = pred.next
        pred.next = to_add
    def deleteAtIndex(self, index: int) -> None:
        """
        Delete the index-th node in the linked list, if the index is valid.
        """
        # if the index is invalid, do nothing
        if index < 0 or index >= self.size:
            return
        self.size -= 1
        # find predecessor of the node to be deleted
        pred = self.head
        for _ in range(index):
            pred = pred.next
        # delete pred.next 
        pred.next = pred.next.next

c++解法

class MyLinkedList {
public:
    /** Initialize your data structure here. */
    MyLinkedList() {
        dummy=new ListNode();
        length=0;
    }
    /** Get the value of the index-th node in the linked list. If the index is invalid, return -1. */
    int get(int index) {
        if(index<0||index>length-1){
            return -1;
        }
        ListNode* cur=dummy;
        for(int i=0;i<index+1;i++){
            cur = cur->next;
        }
        return cur->val;
    }
    /** Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list. */
    void addAtHead(int val) {
        addAtIndex(0,val);
    }
    /** Append a node of value val to the last element of the linked list. */
    void addAtTail(int val) {
        addAtIndex(length,val);
    }
    /** Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted. */
    void addAtIndex(int index, int val) {
      if(index>length) return;
        ListNode* cur=dummy;
        for(int i=0;i<index;i++){
            cur = cur->next;
        }
        ListNode* newNode = new ListNode(val);
        newNode->next = cur->next;
        cur->next = newNode;
        // ListNode* tmp = cur->next;
        // cur->next = new ListNode(val,tmp);
        // cur->next->next = tmp;
        length++;
    }
    /** Delete the index-th node in the linked list, if the index is valid. */
    void deleteAtIndex(int index) {
        if (index >= length || index < 0) {
            return;
        }
        ListNode* cur=dummy;
        for(int i=0;i<index;i++){
            cur = cur->next;
        }
        cur->next = cur->next->next;
        length--;
    }
    public:
        ListNode* dummy;
        int length;
};

java解法

public class ListNode{
    int val;
    ListNode next;
    ListNode(){}
    ListNode(int val){this.val=val;}
    ListNode(int val,ListNode next){this.val=val;this.next=next;}
}
class MyLinkedList {
    int length;
    ListNode dummy;
    public MyLinkedList() {
        length=0;
        dummy=new ListNode(0);
    }
    public int get(int index) {
        if(index<0||index>=length) return -1;
        ListNode cur=dummy.next;
        for(int i=0;i<index;i++){
            cur=cur.next;
        }
        return cur.val;
    }
    public void addAtHead(int val) {
        addAtIndex(0,val);
    }
    public void addAtTail(int val) {
        addAtIndex(length,val);
    }
    public void addAtIndex(int index, int val) {
        if(index>length) return;
        ListNode cur=dummy;
        for(int i=0;i<index;i++){
            cur=cur.next;
        }
        ListNode tmp=cur.next;
        cur.next=new ListNode(val);
        cur.next.next=tmp;
        length++;
    }
    public void deleteAtIndex(int index) {
        if(index<0||index>=length) return;
        ListNode cur=dummy;
        for(int i=0;i<index;i++){
            cur=cur.next;
        }
        cur.next=cur.next.next;
        length--;
    }
}

方法二:双链表

python解法

双链表中的插入操作

双链表中的删除操作

class ListNode:
    def __init__(self, x):
        self.val = x
        self.next, self.prev = None, None
class MyLinkedList:
    def __init__(self):
        self.size = 0
        # sentinel nodes as pseudo-head and pseudo-tail
        self.head, self.tail = ListNode(0), ListNode(0) 
        self.head.next = self.tail
        self.tail.prev = self.head
    def get(self, index: int) -> int:
        """
        Get the value of the index-th node in the linked list. If the index is invalid, return -1.
        """
        # if index is invalid
        if index < 0 or index >= self.size:
            return -1
        # choose the fastest way: to move from the head
        # or to move from the tail
        if index + 1 < self.size - index:
            curr = self.head
            for _ in range(index + 1):
                curr = curr.next
        else:
            curr = self.tail
            for _ in range(self.size - index):
                curr = curr.prev
        return curr.val
    def addAtHead(self, val: int) -> None:
        """
        Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
        """
        pred, succ = self.head, self.head.next
        self.size += 1
        to_add = ListNode(val)
        to_add.prev = pred
        to_add.next = succ
        pred.next = to_add
        succ.prev = to_add
    def addAtTail(self, val: int) -> None:
        """
        Append a node of value val to the last element of the linked list.
        """
        succ, pred = self.tail, self.tail.prev
        self.size += 1
        to_add = ListNode(val)
        to_add.prev = pred
        to_add.next = succ
        pred.next = to_add
        succ.prev = to_add
    def addAtIndex(self, index: int, val: int) -> None:
        """
        Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
        """
        # If index is greater than the length, 
        # the node will not be inserted.
        if index > self.size:
            return
        # [so weird] If index is negative, 
        # the node will be inserted at the head of the list.
        if index < 0:
            index = 0
        # find predecessor and successor of the node to be added
        if index < self.size - index:
            pred = self.head
            for _ in range(index):
                pred = pred.next
            succ = pred.next
        else:
            succ = self.tail
            for _ in range(self.size - index):
                succ = succ.prev
            pred = succ.prev
        # insertion itself
        self.size += 1
        to_add = ListNode(val)
        to_add.prev = pred
        to_add.next = succ
        pred.next = to_add
        succ.prev = to_add
    def deleteAtIndex(self, index: int) -> None:
        """
        Delete the index-th node in the linked list, if the index is valid.
        """
        # if the index is invalid, do nothing
        if index < 0 or index >= self.size:
            return
        # find predecessor and successor of the node to be deleted
        if index < self.size - index:
            pred = self.head
            for _ in range(index):
                pred = pred.next
            succ = pred.next.next
        else:
            succ = self.tail
            for _ in range(self.size - index - 1):
                succ = succ.prev
            pred = succ.prev.prev
        # delete pred.next 
        self.size -= 1
        pred.next = succ
        succ.prev = pred

在add和delete操作中,前向的时候index不再需要加1了,因为如果要插入,我们只要到该元素插入位置前即可。删除也是这样的。但是get就要到该元素的位置,因此index+1

而反向的时候,get,add,delete都是到达该索引原来的位置。只不过get是在当前元素的位置,add是在该元素前插入,delete也是删除该元素前的节点。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
29天前
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
33 1
|
1月前
Leetcode第21题(合并两个有序链表)
这篇文章介绍了如何使用非递归和递归方法解决LeetCode第21题,即合并两个有序链表的问题。
47 0
Leetcode第21题(合并两个有序链表)
|
1月前
LeetCode第二十四题(两两交换链表中的节点)
这篇文章介绍了LeetCode第24题的解法,即如何通过使用三个指针(preNode, curNode, curNextNode)来两两交换链表中的节点,并提供了详细的代码实现。
17 0
LeetCode第二十四题(两两交换链表中的节点)
|
1月前
Leetcode第十九题(删除链表的倒数第N个节点)
LeetCode第19题要求删除链表的倒数第N个节点,可以通过快慢指针法在一次遍历中实现。
39 0
Leetcode第十九题(删除链表的倒数第N个节点)
|
1月前
|
索引
力扣(LeetCode)数据结构练习题(3)------链表
力扣(LeetCode)数据结构练习题(3)------链表
75 0
|
1月前
【LeetCode 10】142. 环形链表 II
【LeetCode 10】142. 环形链表 II
21 0
|
1月前
【LeetCode 09】19 删除链表的倒数第 N 个结点
【LeetCode 09】19 删除链表的倒数第 N 个结点
16 0
|
1月前
【LeetCode 08】206 反转链表
【LeetCode 08】206 反转链表
12 0
|
1月前
【LeetCode 06】203.移除链表元素
【LeetCode 06】203.移除链表元素
28 0
|
3月前
|
算法
LeetCode第24题两两交换链表中的节点
这篇文章介绍了LeetCode第24题"两两交换链表中的节点"的解题方法,通过使用虚拟节点和前驱节点技巧,实现了链表中相邻节点的交换。
LeetCode第24题两两交换链表中的节点