Mysql系列-3.Mysql的SQL优化和锁(中)

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: Mysql系列-3.Mysql的SQL优化和锁

Mysql系列-3.Mysql的SQL优化和锁(上):https://developer.aliyun.com/article/1414534


F. 根据phone,age进行升序排序,phone在前,age在后。

explain select id,age,phone from tb_user order by phone , age;

排序时,也需要满足最左前缀法则,否则也会出现 filesort。因为在创建索引的时候, age是第一个字段,phone是第二个字段,所以排序时,也就该按照这个顺序来,否则就会出现 Usingfilesort。(排序必须要按照顺序)


根据age, phone进行降序一个升序,一个降序

explain select id,age,phone from tb_user order by age asc , phone desc ;

因为创建索引时,如果未指定顺序,默认都是按照升序排序的,而查询时,一个升序,一个降序,此时就会出现Using filesort。

为了解决上述的问题,我们可以创建一个索引,这个联合索引中 age 升序排序,phone 倒序排序。


G. 创建联合索引(age 升序排序,phone 倒序排序)

create index idx_user_age_phone_ad on tb_user(age asc ,phone desc);

H. 然后再次执行如下SQL

explain select id,age,phone from tb_user order by age asc , phone desc ;

升序/降序联合索引结构图示:

由上述的测试,我们得出order by优化原则:


A. 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则。


B. 尽量使用覆盖索引。


C. 多字段排序, 一个升序一个降序,此时需要注意联合索引在创建时的规则(ASC/DESC)。


D. 如果不可避免的出现filesort,大数据量排序时,可以适当增大排序缓冲区大小sort_buffer_size(默认256k)。


group by优化


分组操作,我们主要来看看索引对于分组操作的影响。


首先我们先将 tb_user 表的索引全部删除掉 。

drop index idx_user_pro_age_sta on tb_user;
drop index idx_email_5 on tb_user;
drop index idx_user_age_phone_aa on tb_user;
drop index idx_user_age_phone_ad on tb_user;

接下来,在没有索引的情况下,执行如下SQL,查询执行计划:

explain select profession , count(*) from tb_user group by profession ;

然后,我们在针对于 profession , age, status 创建一个联合索引。

create index idx_user_pro_age_sta on tb_user(profession , age , status);

紧接着,再执行前面相同的SQL查看执行计划。

explain select profession , count(*) from tb_user group by profession ;

再执行如下的分组查询SQL,查看执行计划:

我们发现,如果仅仅根据age分组,就会出现 Using temporary ;而如果是 根据profession,age两个字段同时分组,则不会出现 Using temporary。原因是因为对于分组操作,在联合索引中,也是符合最左前缀法则的。


所以,在分组操作中,我们需要通过以下两点进行优化,以提升性能:


A. 在分组操作时,可以通过索引来提高效率。


B. 分组操作时,索引的使用也是满足最左前缀法则的。


limit优化


在数据量比较大时,如果进行limit分页查询,在查询时,越往后,分页查询效率越低。


我们一起来看看执行limit分页查询耗时对比:

通过测试我们会看到,越往后,分页查询效率越低,这就是分页查询的问题所在。


因为,当在进行分页查询时,如果执行 limit 2000000,10 ,此时需要MySQL排序前2000010 记录,仅仅返回 2000000 - 2000010 的记录,其他记录丢弃,查询排序的代价非常大 。


优化思路: 一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

explain select * from tb_sku t , (select id from tb_sku order by id limit 2000000,10) a where t.id = a.id;

还有一个比较有用的优化方案就是子查询优化,先找出第一条数据,然后大于等于这条数据的id就是要获取的数据


缺点:数据必须是连续的,可以说不能有where条件,where条件会筛选数据,导致数据失去连续性

select * from Member where MemberID >= (select MemberID from Member limit 10,1) limit 100


count优化


概述


select count(*) from tb_user ;

在之前的测试中,我们发现,如果数据量很大,在执行count操作时,是非常耗时的。


  • MyISAM 引擎把一个表的总行数存在了磁盘上,因此执行 count(*) 的时候会直接返回这个数,效率很高; 但是如果是带条件的count,MyISAM也慢。
  • InnoDB 引擎就麻烦了,它执行 count(*) 的时候,需要把数据一行一行地从引擎里面读出来,然后累积计数。


如果说要大幅度提升InnoDB表的count效率,主要的优化思路:自己计数(可以借助于redis这样的数据库进行,但是如果是带条件的count又比较麻烦了)。


count用法


count() 是一个聚合函数,对于返回的结果集,一行行地判断,如果 count 函数的参数不是NULL,累计值就加 1,否则不加,最后返回累计值。


用法:count(*)、count(主键)、count(字段)、count(数字)

count用法 含义
count(主键) InnoDB 引擎会遍历整张表,把每一行的 主键id 值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为null)

count(字段)

没有not null 约束 : InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null 约束:InnoDB 引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。

count(数字) InnoDB 引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
count(*) InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按照效率排序的话,count(字段) < count(主键 id) < count(1) ≈ count(),所以尽量使用 count()。


update优化


我们主要需要注意一下update语句执行时的注意事项。

update course set name = 'javaEE' where id = 1 ;

当我们在执行删除的SQL语句时,会锁定id为1这一行的数据,然后事务提交之后,行锁释放。


但是当我们在执行如下SQL时。

update course set name = 'SpringBoot' where name = 'PHP' ;

当我们开启多个事务,在执行上述的SQL时,我们发现行锁升级为了表锁。 导致该update语句的性能大大降低。


InnoDB的行锁是针对索引加的锁,不是针对记录加的锁 ,并且该索引不能失效,否则会从行锁升级为表锁



概述


锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的计算资源(CPU、RAM、I/O)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。


MySQL中的锁,按照锁的粒度分,分为以下三类:


  • 全局锁:锁定数据库中的所有表。
  • 表级锁:每次操作锁住整张表。
  • 行级锁:每次操作锁住对应的行数据。


全局锁


介绍


全局锁就是对整个数据库实例加锁,加锁后整个实例就处于只读状态,后续的DML的写语句,DDL语句,已经更新操作的事务提交语句都将被阻塞。


其典型的使用场景是做全库的逻辑备份,对所有的表进行锁定,从而获取一致性视图,保证数据的完整性。


为什么全库逻辑备份,就需要加全就锁呢?


A. 我们一起先来分析一下不加全局锁,可能存在的问题。


假设在数据库中存在这样三张表: tb_stock 库存表,tb_order 订单表,tb_orderlog 订单日志表。

  • 在进行数据备份时,先备份了tb_stock库存表。
  • 然后接下来,在业务系统中,执行了下单操作,扣减库存,生成订单(更新tb_stock表,插入tb_order表)。
  • 然后再执行备份 tb_order表的逻辑。
  • 业务中执行插入订单日志操作。
  • 最后,又备份了tb_orderlog表。


此时备份出来的数据,是存在问题的。因为备份出来的数据,tb_stock表与tb_order表的数据不一致(有最新操作的订单信息,但是库存数没减)。


那如何来规避这种问题呢? 此时就可以借助于MySQL的全局锁来解决。


B. 再来分析一下加了全局锁后的情况

对数据库进行进行逻辑备份之前,先对整个数据库加上全局锁,一旦加了全局锁之后,其他的DDL、DML全部都处于阻塞状态,但是可以执行DQL语句,也就是处于只读状态,而数据备份就是查询操作。那么数据在进行逻辑备份的过程中,数据库中的数据就是不会发生变化的,这样就保证了数据的一致性和完整性。


语法


1). 加全局锁

flush tables with read lock ;

2). 数据备份

mysqldump -uroot –p1234 itcast > itcast.sql

3). 释放锁

unlock tables ;


特点


数据库中加全局锁,是一个比较重的操作,存在以下问题:


  • 如果在主库上备份,那么在备份期间都不能执行更新,业务基本上就得停摆。
  • 如果在从库上备份,那么在备份期间从库不能执行主库同步过来的二进制日志(binlog),会导致主从延迟。


在InnoDB引擎中,我们可以在备份时加上参数 --single-transaction 参数来完成不加锁的一致性数据备份。

mysqldump --single-transaction -uroot –p123456 itcast > itcast.sql

–single-transaction 参数实现不加锁的一致性数据备份的原理如下:


  1. 创建一致性读取的视图: 当使用 --single-transaction 参数时,在备份开始之前,首先会在数据库中启动一个事务,并在这个事务中创建一个一致性读取的视图。这个视图会记录事务开始时刻数据库中的所有数据状态。
  2. 使用一致性视图进行备份: 一旦一致性读取的视图创建完成,备份工具(比如 mysqldump)将使用这个视图来进行备份操作。这意味着备份工具在整个备份过程中都会使用事务开始时刻创建的一致性视图,而不会受到其他事务对数据的修改影响。
  3. 持续读取: 在备份期间,其他事务对数据的修改不会影响备份操作。因为备份工具使用的是一个一致性的数据视图,所以即使其他事务在备份期间对数据进行了修改,这些修改也不会反映在备份数据中,确保了备份数据的一致性。
  4. 提交事务: 当备份完成后,可以选择提交或回滚之前启动的事务。如果提交事务,那么事务中对数据的读取操作就会生效;如果回滚事务,则会撤销这个事务中的所有操作,回到事务开始时刻的数据状态。


通过上述步骤,使用 --single-transaction 参数能够在不加锁的情况下完成一致性的数据备份。这样的备份方式对于大型数据库系统来说非常重要,因为它可以避免备份过程中对数据库的写操作造成的阻塞,同时保证备份数据的一致性。


表级锁


介绍


表级锁,每次操作锁住整张表。锁定粒度大,发生锁冲突的概率最高,并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。


对于表级锁,主要分为以下三类:


  • 表锁
  • 元数据锁(meta data lock,MDL)
  • 意向锁


表锁


对于表锁,分为两类:


  • 表共享读锁(read lock)
  • 表独占写锁(write lock)


语法:


  • 加锁:lock tables 表名… read/write。
  • 释放锁:unlock tables / 客户端断开连接 。


特点:


A. 读锁

左侧为客户端一,对指定表加了读锁,不会影响右侧客户端二的读,但是会阻塞右侧客户端的写。


测试:

B. 写锁

左侧为客户端一,对指定表加了写锁,会阻塞右侧客户端的读和写。


测试:

结论: 读锁不会阻塞其他客户端的读,但是会阻塞写。写锁既会阻塞其他客户端的读,又会阻塞其他客户端的写。


元数据锁


meta data lock , 元数据锁,简写MDL。


MDL加锁过程是系统自动控制,无需显式使用,在访问一张表的时候会自动加上。MDL锁主要作用是维护表元数据的数据一致性,在表上有活动事务的时候,不可以对元数据进行写入操作。为了避免DML与DDL冲突,保证读写的正确性。


这里的元数据,大家可以简单理解为就是一张表的表结构。 也就是说,某一张表涉及到未提交的事务时,是不能够修改这张表的表结构的。


在MySQL5.5中引入了MDL,当对一张表进行增删改查的时候,加MDL读锁(共享);当对表结构进行变更操作的时候,加MDL写锁(排他)。


常见的SQL操作时,所添加的元数据锁:

对应SQL 锁类型 说明
lock tables xxx read /write SHARED_READ_ONLY /SHARED_NO_READ_WRITE
select 、select …lock in share mode SHARED_READ 与SHARED_READ、SHARED_WRITE兼容,与EXCLUSIVE互斥
insert 、update、delete、select … for update SHARED_WRITE 与SHARED_READ、SHARED_WRITE兼容,与EXCLUSIVE互斥
alter table … EXCLUSIVE 与其他的MDL都互斥

演示:


当执行SELECT、INSERT、UPDATE、DELETE等语句时,添加的是元数据共享锁(SHARED_READ /

SHARED_WRITE),之间是兼容的。

当执行SELECT语句时,添加的是元数据共享锁(SHARED_READ),会阻塞元数据排他锁(EXCLUSIVE),之间是互斥的。

我们可以通过下面的SQL,来查看数据库中的元数据锁的情况:

select object_type,object_schema,object_name,lock_type,lock_duration from performance_schema.metadata_locks ;

我们在操作过程中,可以通过上述的SQL语句,来查看元数据锁的加锁情况。


Mysql系列-3.Mysql的SQL优化和锁(下):https://developer.aliyun.com/article/1414570

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
918 152
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
634 156
|
3月前
|
SQL 存储 监控
SQL日志优化策略:提升数据库日志记录效率
通过以上方法结合起来运行调整方案, 可以显著地提升SQL环境下面向各种搜索引擎服务平台所需要满足标准条件下之数据库登记作业流程综合表现; 同时还能确保系统稳健运行并满越用户体验预期目标.
246 6
|
4月前
|
SQL 监控 关系型数据库
SQL优化技巧:让MySQL查询快人一步
本文深入解析了MySQL查询优化的核心技巧,涵盖索引设计、查询重写、分页优化、批量操作、数据类型优化及性能监控等方面,帮助开发者显著提升数据库性能,解决慢查询问题,适用于高并发与大数据场景。
|
4月前
|
关系型数据库 分布式数据库 数据库
阿里云数据库收费价格:MySQL、PostgreSQL、SQL Server和MariaDB引擎费用整理
阿里云数据库提供多种类型,包括关系型与NoSQL,主流如PolarDB、RDS MySQL/PostgreSQL、Redis等。价格低至21元/月起,支持按需付费与优惠套餐,适用于各类应用场景。
|
4月前
|
SQL 监控 关系型数据库
查寻MySQL或SQL Server的连接数,并配置超时时间和最大连接量
以上步骤提供了直观、实用且易于理解且执行的指导方针来监管和优化数据库服务器配置。务必记得,在做任何重要变更前备份相关配置文件,并确保理解每个参数对系统性能可能产生影响后再做出调节。
528 11
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
417 158
|
4月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
5月前
|
存储 运维 关系型数据库
从MySQL到云数据库,数据库迁移真的有必要吗?
本文探讨了企业在业务增长背景下,是否应从 MySQL 迁移至云数据库的决策问题。分析了 MySQL 的优势与瓶颈,对比了云数据库在存储计算分离、自动化运维、多负载支持等方面的优势,并提出判断迁移必要性的五个关键问题及实施路径,帮助企业理性决策并落地迁移方案。
|
4月前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
479 161