美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】

简介: 美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】

一、介绍

美食管理与推荐系统。本系统使用Python作为主要开发语言开发的一个美食管理推荐网站平台。
网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。
创新点:项目中使用协同过滤推荐算法通过用户对美食的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为管理员和用户两个角色
  • 用户可以登录、注册、查看美食、购买食物、收藏食物、发布评论、对食物评分、查看个人收藏、查看个人订单、编辑个人信息、个人充值、个性化推荐等功能
  • 管理员在后台系统中可以对用户和食物信息进行管理

    二、系统效果图片展示

    img_01_07_19_24_12

img_01_07_19_24_27

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ze33rzbcryp4v6fr

四、基于用户的协同过滤推荐算法介绍

基于用户的协同过滤推荐算法是一种常见的推荐系统方法,它主要通过分析用户的行为和偏好来进行推荐。这个算法的核心思想是:如果两个用户在过去喜欢过类似的东西,那么他们在未来也很可能会喜欢相似的东西。
这个算法主要分为三个步骤:

  1. 找到相似用户:首先,算法会计算用户之间的相似度。这通常是通过比较他们的历史行为(如评分等)来实现的。相似度可以用多种方式计算,如欧几里得距离、余弦相似度等。
  2. 预测用户的喜好:一旦找到了与目标用户相似的用户群体,算法就会分析这些相似用户的喜好来预测目标用户可能感兴趣的项目。
  3. 生成推荐列表:最后,根据预测的喜好,为目标用户生成一个推荐列表。

下面用Python代码演示一个非常简单的基于用户的协同过滤推荐算法示例。假设我们有一组用户的电影评分数据,我们将尝试为其中一个用户推荐电影。

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# 示例数据:用户的电影评分(0表示未观看)
ratings = np.array([
    [5, 4, 0, 0, 3],
    [0, 3, 4, 0, 3],
    [2, 0, 0, 5, 0],
    [0, 0, 5, 4, 0]
])

# 计算用户间的相似度
similarity = cosine_similarity(ratings)

# 选择目标用户(比如第一个用户)
target_user = ratings[0]

# 计算其他用户对目标用户未看电影的评分加权和
scores = np.dot(similarity[0], ratings)

# 推荐评分最高的电影
recommended_movie_index = np.argmax(scores)
print("推荐的电影索引是:", recommended_movie_index)

这个例子中,我们使用了余弦相似度来计算用户之间的相似度,并为第一个用户推荐了一个他可能喜欢的电影。这只是一个基础示例,实际应用中算法会更加复杂和精细。

目录
相关文章
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
208 0
|
3月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
267 102
|
2月前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
196 6
|
2月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
232 0
|
3月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
247 0
|
3月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
420 0
|
3月前
|
中间件 机器人 API
Python多态实战:从基础到高阶的“魔法”应用指南
Python多态机制通过“鸭子类型”实现灵活接口,使不同对象统一调用同一方法,自动执行各自行为。它简化代码逻辑、提升扩展性,适用于数据处理、策略切换、接口适配等场景。掌握多态思维,能有效减少冗余判断,使程序更优雅、易维护。
201 0
|
应用服务中间件 nginx Python
Django项目部署
环境 django == 1.11.16 nginx == 1.10.3 项目编写 略 安装nginx 略(前一篇有详细介绍) 配置uwsgi 创建 xxx.ini 文件 [uwsgi] socket=:9000 # 端口 chdir=/mnt/project/project_api # 项目路径 包含manage.
|
Ubuntu 应用服务中间件 nginx
Django项目部署
一、Nginx+uWSGI+Django部署生产环境 原理 为什么还要Nginx Django有个runserver直接起了一个WebServer,为什么还要Nginx起一个WebServer呢? Nginx的性能比Django自带的WebServe...
4596 0

热门文章

最新文章

推荐镜像

更多