美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】

简介: 美食物管理与推荐系统Python+Django网站开发+协同过滤推荐算法应用【计算机课设项目推荐】

一、介绍

美食管理与推荐系统。本系统使用Python作为主要开发语言开发的一个美食管理推荐网站平台。
网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。
创新点:项目中使用协同过滤推荐算法通过用户对美食的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为管理员和用户两个角色
  • 用户可以登录、注册、查看美食、购买食物、收藏食物、发布评论、对食物评分、查看个人收藏、查看个人订单、编辑个人信息、个人充值、个性化推荐等功能
  • 管理员在后台系统中可以对用户和食物信息进行管理

    二、系统效果图片展示

    img_01_07_19_24_12

img_01_07_19_24_27

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ze33rzbcryp4v6fr

四、基于用户的协同过滤推荐算法介绍

基于用户的协同过滤推荐算法是一种常见的推荐系统方法,它主要通过分析用户的行为和偏好来进行推荐。这个算法的核心思想是:如果两个用户在过去喜欢过类似的东西,那么他们在未来也很可能会喜欢相似的东西。
这个算法主要分为三个步骤:

  1. 找到相似用户:首先,算法会计算用户之间的相似度。这通常是通过比较他们的历史行为(如评分等)来实现的。相似度可以用多种方式计算,如欧几里得距离、余弦相似度等。
  2. 预测用户的喜好:一旦找到了与目标用户相似的用户群体,算法就会分析这些相似用户的喜好来预测目标用户可能感兴趣的项目。
  3. 生成推荐列表:最后,根据预测的喜好,为目标用户生成一个推荐列表。

下面用Python代码演示一个非常简单的基于用户的协同过滤推荐算法示例。假设我们有一组用户的电影评分数据,我们将尝试为其中一个用户推荐电影。

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# 示例数据:用户的电影评分(0表示未观看)
ratings = np.array([
    [5, 4, 0, 0, 3],
    [0, 3, 4, 0, 3],
    [2, 0, 0, 5, 0],
    [0, 0, 5, 4, 0]
])

# 计算用户间的相似度
similarity = cosine_similarity(ratings)

# 选择目标用户(比如第一个用户)
target_user = ratings[0]

# 计算其他用户对目标用户未看电影的评分加权和
scores = np.dot(similarity[0], ratings)

# 推荐评分最高的电影
recommended_movie_index = np.argmax(scores)
print("推荐的电影索引是:", recommended_movie_index)

这个例子中,我们使用了余弦相似度来计算用户之间的相似度,并为第一个用户推荐了一个他可能喜欢的电影。这只是一个基础示例,实际应用中算法会更加复杂和精细。

目录
相关文章
|
5月前
|
异构计算 Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
470 1
|
5月前
|
API 语音技术 开发者
Python 项目打包,并上传到 PyPI,分享项目
本文介绍了如何使用 Poetry 打包并发布一个 Python 项目至 PyPI。内容包括:项目创建、配置 `pyproject.toml` 文件、构建软件包、上传至 PyPI、安装与使用。通过实例 iGTTS 展示了从开发到发布的完整流程,帮助开发者快速分享自己的 Python 工具。
|
5月前
|
人工智能 Shell Python
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
ERROR: pip’s dependency resolver does not currently take into 报错-Python项目依赖冲突的解决方案-优雅草优雅草卓伊凡
288 0
|
8月前
|
监控 大数据 API
Python 技术员实践指南:从项目落地到技术优化
本内容涵盖Python开发的实战项目、技术攻关与工程化实践,包括自动化脚本(日志分析系统)和Web后端(轻量化API服务)两大项目类型。通过使用正则表达式、Flask框架等技术,解决日志分析效率低与API服务性能优化等问题。同时深入探讨内存泄漏排查、CPU瓶颈优化,并提供团队协作规范与代码审查流程。延伸至AI、大数据及DevOps领域,如商品推荐系统、PySpark数据处理和Airflow任务编排,助力开发者全面提升从编码到架构的能力,积累高并发与大数据场景下的实战经验。
Python 技术员实践指南:从项目落地到技术优化
|
10月前
|
程序员 测试技术 开发工具
怎么开发Python第三方库?手把手教你参与开源项目!
大家好,我是程序员晚枫。本文将分享如何开发Python第三方库,并以我维护的开源项目 **popdf** 为例,指导参与开源贡献。Popdf是一个PDF操作库,支持PDF转Word、转图片、合并与加密等功能。文章涵盖从fork项目、本地开发、单元测试到提交PR的全流程,适合想了解开源贡献的开发者。欢迎访问[popdf](https://gitcode.com/python4office/popdf),一起交流学习!
334 21
怎么开发Python第三方库?手把手教你参与开源项目!
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
285 2
|
测试技术 Python
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
646 31
【03】做一个精美的打飞机小游戏,规划游戏项目目录-分门别类所有的资源-库-类-逻辑-打包为可玩的exe-练习python打包为可执行exe-优雅草卓伊凡-持续更新-分享源代码和游戏包供游玩-1.0.2版本
|
11月前
|
Docker Python 容器
Docker——阿里云服务器使用Docker部署python项目全程小记
本文记录了我在阿里云服务器上使用Docker部署python项目(flask为例)的全过程,在这里记录和分享一下,希望可以给大家提供一些参考。
1453 1
|
监控 安全 测试技术
如何在实际项目中应用Python Web开发的安全测试知识?
如何在实际项目中应用Python Web开发的安全测试知识?
245 61

推荐镜像

更多