Redis专题(持续更新) 04-VIP-Redis缓存设计与性能优化

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位。发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下。

04-VIP-Redis缓存设计与性能优化


文章目录


正文

多级缓存架构

缓存设计

缓存穿透

缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。

缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去了缓存保护后端存储的意义。

造成缓存穿透的基本原因有两个:

第一, 自身业务代码或者数据出现问题。

第二, 一些恶意攻击、 爬虫等造成大量空命中。

缓存穿透问题解决方案:

1、缓存空对象

1 String get(String key) {
2 // 从缓存中获取数据
3 String cacheValue = cache.get(key);
4 // 缓存为空
5 if (StringUtils.isBlank(cacheValue)) {
6 // 从存储中获取
7 String storageValue = storage.get(key);
8 cache.set(key, storageValue);
9 // 如果存储数据为空, 需要设置一个过期时间(300秒)
10 if (storageValue == null) {
11 cache.expire(key, 60 * 5);
12 }
13 return storageValue;
14 } else {
15 // 缓存非空
16 return cacheValue;
17 }
18 }

2、布隆过滤器

对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。

布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得

比较均匀。

向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度

进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就

完成了 add 操作。

向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位

置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个

key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组

比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。

这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为

复杂, 但是缓存空间占用很少。

可以用redisson实现布隆过滤器,引入依赖:

1 <dependency>
2 <groupId>org.redisson</groupId>
3 <artifactId>redisson</artifactId>
4 <version>3.6.5</version>
5 </dependency>

示例伪代码:

1 package com.redisson;
2
3 import org.redisson.Redisson;
4 import org.redisson.api.RBloomFilter;
5 import org.redisson.api.RedissonClient;
6 import org.redisson.config.Config;
7
8 public class RedissonBloomFilter {
9
10 public static void main(String[] args) {
11 Config config = new Config();
12 config.useSingleServer().setAddress("redis://localhost:6379");
13 //构造Redisson
14 RedissonClient redisson = Redisson.create(config);
15
16 RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
17 //初始化布隆过滤器:预计元素为100000000L,误差率为3%,根据这两个参数会计算出底层的bit数组大小
18 bloomFilter.tryInit(100000000L,0.03);
19 //将zhuge插入到布隆过滤器中
20 bloomFilter.add("zhuge");
21
22 //判断下面号码是否在布隆过滤器中
23 System.out.println(bloomFilter.contains("guojia"));//false
24 System.out.println(bloomFilter.contains("baiqi"));//false
25 System.out.println(bloomFilter.contains("zhuge"));//true
26 }
27 }

使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,布隆过滤器

缓存过滤伪代码:

1 //初始化布隆过滤器
2 RBloomFilter<String> bloomFilter = redisson.getBloomFilter("nameList");
3 //初始化布隆过滤器:预计元素为100000000L,误差率为3%
4 bloomFilter.tryInit(100000000L,0.03);
5
6 //把所有数据存入布隆过滤器
7 void init(){
8 for (String key: keys) {
9 bloomFilter.put(key);
10 }
11 }
12
13 String get(String key) {
14 // 从布隆过滤器这一级缓存判断下key是否存在
15 Boolean exist = bloomFilter.contains(key);
16 if(!exist){
17 return "";
18 }
19 // 从缓存中获取数据
20 String cacheValue = cache.get(key);
21 // 缓存为空
22 if (StringUtils.isBlank(cacheValue)) {
23 // 从存储中获取
24 String storageValue = storage.get(key);
25 cache.set(key, storageValue);
26 // 如果存储数据为空, 需要设置一个过期时间(300秒)
27 if (storageValue == null) {
28 cache.expire(key, 60 * 5);
29 }
30 return storageValue;
31 } else {
32 // 缓存非空
33 return cacheValue;
34 }
35 }

注意:布隆过滤器不能删除数据,如果要删除得重新初始化数据。

缓存失效(击穿)

由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大

甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同

时间。

示例伪代码:

1 String get(String key) {
2 // 从缓存中获取数据
3 String cacheValue = cache.get(key);
4 // 缓存为空
5 if (StringUtils.isBlank(cacheValue)) {
6 // 从存储中获取
7 String storageValue = storage.get(key);
8 cache.set(key, storageValue);
9 //设置一个过期时间(300到600之间的一个随机数)
10 int expireTime = new Random().nextInt(300) + 300;
11 if (storageValue == null) {
12 cache.expire(key, expireTime);
13 }
14 return storageValue;
15 } else {
16 // 缓存非空
17 return cacheValue;
18 }
19 }

缓存雪崩

缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。

由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并

发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下

降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。

预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。

1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。

2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。

比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商

品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是

错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,

也可以继续通过数据库读取。

3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基

础上做一些预案设定。

热点缓存key重建优化

开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满

足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:

当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。

重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。

在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。

要解决这个问题主要就是要避免大量线程同时重建缓存。

我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从

缓存获取数据即可。

示例伪代码:

1 String get(String key) {
2 // 从Redis中获取数据
3 String value = redis.get(key);
4 // 如果value为空, 则开始重构缓存
5 if (value == null) {
6 // 只允许一个线程重建缓存, 使用nx, 并设置过期时间ex
7 String mutexKey = "mutext:key:" + key;
8 if (redis.set(mutexKey, "1", "ex 180", "nx")) {
9 // 从数据源获取数据
10 value = db.get(key);
11 // 回写Redis, 并设置过期时间
12 redis.setex(key, timeout, value);
13 // 删除key_mutex
14 redis.delete(mutexKey);
15 }// 其他线程休息50毫秒后重试
16 else {
17 Thread.sleep(50);
18 get(key);
19 }
20 }
21 return value;
22 }

缓存与数据库双写不一致

在大并发下,同时操作数据库与缓存会存在数据不一致性问题

1、双写不一致情况

2、读写并发不一致

解决方案:

1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生

缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。

2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期

时间依然可以解决大部分业务对于缓存的要求。

3、如果不能容忍缓存数据不一致,可以通过加读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相

当于无锁。

4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加

了系统的复杂度。

总结:

以上我们针对的都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那

就没必要加缓存了,可以直接操作数据库。放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切

记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性!

明天我们说开发规范与性能优化!

相关文章
|
5月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
17天前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
106 1
Redis专题-实战篇二-商户查询缓存
|
5月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
728 0
|
17天前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。
|
4月前
|
缓存 负载均衡 网络协议
电商API接口性能优化技术揭秘:缓存策略与负载均衡详解
电商API接口性能优化是提升系统稳定性和用户体验的关键。本文聚焦缓存策略与负载均衡两大核心,详解其在电商业务中的实践。缓存策略涵盖本地、分布式及CDN缓存,通过全量或部分缓存设计和一致性维护,减少后端压力;负载均衡则利用反向代理、DNS轮询等技术,结合动态调整与冗余部署,提高吞吐量与可用性。文中引用大型及跨境电商平台案例,展示优化效果,强调持续监控与迭代的重要性,为电商企业提供了切实可行的性能优化路径。
|
5月前
|
消息中间件 缓存 NoSQL
基于Spring Data Redis与RabbitMQ实现字符串缓存和计数功能(数据同步)
总的来说,借助Spring Data Redis和RabbitMQ,我们可以轻松实现字符串缓存和计数的功能。而关键的部分不过是一些"厨房的套路",一旦你掌握了这些套路,那么你就像厨师一样可以准备出一道道饕餮美食了。通过这种方式促进数据处理效率无疑将大大提高我们的生产力。
191 32
|
5月前
|
缓存 NoSQL Java
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
110 5
Redis:现代服务端开发的缓存基石与电商实践-优雅草卓伊凡
|
7月前
|
缓存 NoSQL Java
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
400 16
Redis应用—8.相关的缓存框架
|
7月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
1304 29
|
10月前
|
存储 缓存 NoSQL
解决Redis缓存数据类型丢失问题
解决Redis缓存数据类型丢失问题
383 85