用户画像建设

简介: 用户画像建设

用户画像

用户画像,即用户信息标签化,是大数据精细化运营和精准营销服务的基础。

在大数据的时代下,用户的一切行为是可追溯和分析的。

用户画像是通过分析用户的基础信息、特征偏好、社会属性等各维度的数据,刻画出用户的信息全貌,从中挖掘用户价值。

它可以帮助数据“起死回生”,提供个性化推荐、精准营销、个性化服务。

画像基础

1.1 标签类型

用户画像建模其实就是对用户“打标签”,一般分为三类:

● 统计类标签:最基础常见的标签,从用户注册数据、用户访问数据中统计得出。

● 规则类标签:基于用户行为及规则产生,通常由对业务更为熟悉的运营人员和数据人员共同协商确定。

● 机器学习挖掘类标签:通过机器学习挖掘产生,根据某些用户行为或熟悉进行预测判断。

例如,根据一个用户购买化妆品护肤品的次数权重更高,得出该用户的性别是女性。

1.2 数据结构

画像系统的基础设施包括Spark、Hive、HBase、Airflow、Redis、Elasticsearch

下图是《用户画像》中的数据仓库架构。

1)数据仓库ETL加工流程是对每日的业务数据、日志数据、埋点数据等数据经过ETL过程,加工到对应的原始数据层(ODS)、数据仓库(DW)、数据集市层(DM)中。

(2)用户画像不是产生数据的源头,是经过ODS层、DW层、DM层中的数据与用户相关数据的二次建模加工得到的数据。

在ETL过程将用户标签写入Hive,根据不同数据对应不同数据库的应用场景,再将数据同步到MySQL、HBase、Elasticsearch等数据库中。

Hive:存储用户标签、用户人群及用户特征库的计算结果

MySQL:存储标签元数据,监控相关数据,导出到业务系统的数据

HBase:存储线上实时数据

Elasticsearch:支持海量数据的实时查询分析

(3)用户标签在Hive中加工完成后,部分标签通过Sqoop同步到MySQL数据库,提供用于BI报表展示的数据、多为透视分析数据、圈人服务数据;另一部分标签同步到HBase数据库用于产品的线上个性化推荐。

数据服务层开发

数据的主要目的是应用到业务系统和营销场景中,需要打通标签数据和业务系统,通过产品化的方式将标签数据应用到业务系统。

数据服务层开发就包括了离线服务层和在线服务层。

离线服务层:将ETL后的用户群数据推送到对应业务系统。

在线服务层:以RESTful API方式提供接口服务,可支持个性化推荐、营销推送(站内广告系统的个性化弹窗、App的消息push和轮播广告、短信等)、在线特征库等场景。

几个典型的应用场景包括:

1)短信营销:可以基于用户画像的自定义圈人服务,进行重点用户的广告/消息消息推送/短信/邮件营销。

2)邮件营销:可以基于不同用户群体,进行个性化有效的会员营销,同时在服务上也可以基于已经打通的用户数据,提供会员差异化的客服/物流/活动等服务。

3)风控系统:可以根据用户级别,作为风控系统规则引擎或模型的输入。

4)数据分析:可以分析不同群体的行为特征,提供分析和决策。

5)BI数据:可以监控核心用户群体的变化,为上层决策提供数据基础支持。

 

 

 

1.用户是否大V(绑定信息根据新浪微博)---是否极高影响力  34亿  3万

2.下沉市场(收货地址+客单价)

3.年龄(老年人)

 

参考:

https://zhuanlan.zhihu.com/p/147722916

https://houbb.github.io/2020/06/03/user-pic-01-basic


相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
6月前
|
存储 SQL 分布式计算
用户画像系列—如何从0到1建设用户画像
用户画像系列—如何从0到1建设用户画像
186 0
|
存储 数据采集 Oracle
医疗(医院)数据中台建设方案
以广州某三甲医院数据中台建设目标为例
2714 0
|
数据采集 存储 弹性计算
全域数据“观”|63页金融行业数字化建设方法论
期望《全域数据“观”》可以帮助金融行业通过能力体系建设方法,助力金融机构掌握数据能力体系的建设目标、方法和成功要素,从而推动金融机构逐步实现数据驱动业务发展的目标。
1426 0
全域数据“观”|63页金融行业数字化建设方法论
|
机器学习/深度学习 算法 搜索推荐
大数据时代,如何构建精准用户画像,直击精细化运营
移动互联网时代,精细化运营逐渐成为企业发展的重要竞争力,“用户画像”的概念也应运而生。用户画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。
2450 0
|
机器学习/深度学习 数据采集 SQL
关于互联网金融授信产品的风控建模
关于互联网金融授信产品的风控建模
关于互联网金融授信产品的风控建模
|
数据挖掘
金融行业数据分析
本文研究全球及中国市场金融行业数据分析现状及未来发展趋势,侧重分析全球及中国市场的主要企业,同时对比北美、欧洲、中国、日本、东南亚和印度等地区的现状及未来发展趋势
|
新零售 人工智能 供应链
数智洞察丨数智化时代的产品经理,如何洞察客户需求?
洞察客户需求是产品经理的核心能力之一,在数智经济时代,数智用户资产尤为重要,如何实时洞察消费者需求、满足消费者需求?如何用数智驱动新增长?
数智洞察丨数智化时代的产品经理,如何洞察客户需求?
|
搜索推荐 大数据 BI
从0到1搭建车企数字化营销中台(1):营销现状分析
通过分析汽车行业数字化营销发展的五大趋势来拆解车企当前面临的数字化营销转型的六大痛点,指导如何搭建数字化营销平台。
1504 0
从0到1搭建车企数字化营销中台(1):营销现状分析
|
新零售 搜索推荐 数据挖掘
新零售企业如何借助全域数据中台方法论进行自有用户洞察
作者:柯根 更多内容详见数据中台官网 https://dp.alibaba.com 一、前言 完善的数据分析体系,是企业数字化转型必备的基础,企业在发展过程中,无论规模、性质如何,都离不开对用户(顾客/客户)的洞察,在新零售行业更是如此。
1977 0
新零售企业如何借助全域数据中台方法论进行自有用户洞察
下一篇
无影云桌面