用户画像系列—如何从0到1建设用户画像

简介: 用户画像系列—如何从0到1建设用户画像

1.用户画像平台该如何建设?

根据上一篇文章,我们讲到用户画像其实就是用户的标签或者特征,首先要明确就是要完成标签的生产和加工,那么涉及到的内容就包括数据的接入、清洗、和最后标签的加工入库。

标签整体流程如下:

(1)线上日志数据接入和处理

数据分层

(2)标签的加工和挖掘

a.标签加工根据标签的加工方式分为三类:事实类、统计类、算法类

事实类:主要是基于原始数据同步过来即可,比如:最后一次登录时间

统计类:在原始数据上做一些简单的统计规则,比如:最近一个月活跃天数

算法类:根据用户的行为和交易信息利用算法挖掘出来,比如:工作位置、家庭位置(根据gps信息采用聚类算法挖掘出来)

b.标签加工根据标签的时效性分为三类:离线(T+1)、准实时(T+H)、实时

(3)标签存储和应用

为了应对不同的应用场景,使用不同的数据库作为存储方案

(4)标签权限管控、标签字典、标签质量

标签权限管控:业务只能使用申请权限了的标签权限,标签权限配置存储在MySQL

标签字典:标签内容数据只存储字典枚举,而不实际存储实际内容(比如:性别标签男女存储为0、1)

标签质量:对于标签的数据质量进行监控、波动告警,包含:标签的覆盖率、标签分布的监控告警

2.用户画像建设过程中会用到哪些技术?

(1)大数据相关的一些技术

Java、MySQL、Python、Hive、Spark、Flink、HBase

(2)服务开发

rpc服务

(3)标签挖掘算法

聚类、逻辑回归等,Python、Spark

3.用户画像建设过程中会遇到哪些问题?

(1)降本增效大环境下,用户画像侧如何做好存储和计算性能优化?

a.KV存储采用Protobuf存储,Protobuf编码性能好且压缩比高。因为画像的数据类型一般比较固定、单值或者多值,对序列化反序列化性能以及数据压缩效果有较高要求

b.标签内容字典化

c.画像特征抽取自定义抽取,资源占用低

目前特征抽取主要有单特征抽取和批量特征抽取

单特征:优点,控制灵活。缺点,每个特征都会启动各自的拉取任务,执行效率低且耗费资源。

批量特征抽取:成本可控,但较依赖上游Hive 表数据

因此考虑自定义特征抽取方案,根据标签优先级策略配置抽取策略,既能做到成本可控又能做到满足时效性。

d.冷热数据分级存储

热数据考虑用更好的硬件设备进行存储(SSD、独立集群等)、冷数据考虑用一般的硬件设备进行存储(HHD、公共集群)

后续会继续进行阐述用户画像系列

用户画像系列-用户画像如何应用呢

用户画像系列-不同行业、不同公司做用户画像哪些区别呢?

目录
打赏
0
0
0
0
8
分享
相关文章
基于clickhouse做用户画像,标签圈选
基于clickhouse做用户画像,标签圈选
1368 0
基于clickhouse做用户画像,标签圈选
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
871 2
探索Flink动态CEP:杭州银行的实战案例
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
740 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
大数据用户画像之基本概念
大数据用户画像利用大数据技术分析用户基本信息、消费行为、兴趣、社交及地理数据,创建详细用户模型,助力企业精准营销。涉及技术包括数据挖掘、大数据处理(Hadoop、Spark)、数据可视化、机器学习和数据库管理。通过用户画像,企业可实现市场定位、个性化推荐、精准广告、产品优化和风险控制。学习该领域需掌握多个技术栈,包括相关算法、工具及业务理解。
1510 4