随机漫步理论--python手把手讲解

简介: 随机漫步理论最初由Karl Pearson于1905年提出,它描述的是一种随机过程,其中每一步都是随机的,没有明确的方向。这个理论在自然科学、社会科学和工程领域都有广泛的应用。一个著名的例子是花粉在水滴表面的运动,它的路径可以被模拟为随机漫步模型。

使用Python来模拟随机漫步的过程,我们可以通过生成随机数来模拟每一步的移动方向和距离。在这个模拟过程中,初始位置通常被设定为原点,然后根据随机生成的步长和方向来更新位置,重复这个过程直到达到指定的步数。最终的位置可以用来描述随机漫步的路径。

通过模拟随机漫步过程,我们可以更好地理解和预测自然界和社会世界中的各种现象和行为。例如,在金融领域,随机漫步理论被用来建立股票价格的模型;在生物学中,它被用来研究分子的扩散过程。总之,随机漫步理论的应用涵盖了许多不同的领域,对于理解随机性和不确定性具有重要意义。

首先我们先建立一个叫RandomWalk 的类,它的功能是随机选着前进的方向,这主要有三点,一个是走多少步,向哪个方向走(x轴,y轴)

from random import choice#应用随机模块
class RandomWalk:#用于生成随机漫步的数据

    def __init__(self, num_points=5000):
        """这里做了一个函数,我们假设我们需要走5000点"""
        self.num_points = num_points

        # 所有的步都是从原点开始的
        self.x_values = [0]
        self.y_values = [0]

    def fill_walk(self):
        """现在我们开始确认每一个点走的方向和距离"""

        # 这个决定了方向和距离
        while len(self.x_values) < self.num_points:

            # Decide which direction to go and how far to go in that direction.
            x_direction = choice([1, -1])
            #每次不是向右走加1,就是向左走-1
            x_distance = choice([0, 1, 2, 3, 4])
            #这是一个选择5个步数任意一个,来决定这个点走多少步
            x_step = x_direction * x_distance

            y_direction = choice([1, -1])
            y_distance = choice([0, 1, 2, 3, 4])
            y_step = y_direction * y_distance

            # 如果出现两次都是0的情况况要重新执行
            if x_step == 0 and y_step == 0:
                continue

            # 这里计算下一个漫步的点
            x = self.x_values[-1] + x_step
            y = self.y_values[-1] + y_step

            self.x_values.append(x)
            self.y_values.append(y)

这段代码是一个用于生成随机漫步数据的Python类。首先定义了一个RandomWalk类,其中包括了一个初始化函数init()和一个填充随机漫步数据的函数fill_walk()。

在初始化函数init()中,定义了一个默认参数num_points,表示需要生成的随机漫步点的数量,默认值为5000。在初始化过程中,将初始位置设定为原点(0, 0),并创建了两个空列表x_values和y_values来存储随机漫步的x和y坐标。

fill_walk()函数用于生成随机漫步数据,其中通过while循环来不断生成随机步数,直到达到指定的点数。在每一步中,通过随机选择方向和步长来确定下一个点的位置,并将该位置添加到x_values和y_values列表中。

接下来我们就要开始绘制随机漫步图了


import numpy as np
import matplotlib.pyplot as plt
#这里引用的两大最常用的数据分析函数我就不多提了

from random_walk import RandomWalk
#把上面我们做的漫步类引进来,这里我们单独创建一个文件了,上面那个存在另一个文件,这里把两个文件放在同一个文件夹下

#这里用了一个循环,让程序不断地模拟,后面再设置中断
while True:
 #创建一个RandomWalk实例
    rw = RandomWalk(50_000)
    rw.fill_walk()

    # 把所有的漫步的点都画出来
    plt.style.use('classic')
    fig, ax = plt.subplots(figsize=(15, 9))
    point_numbers = range(rw.num_points)
    ax.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues,
        edgecolors='none', s=1)#画出散点图



    # 这里我隐藏了坐标,方便你全心去观察他们的图像移动
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    plt.show()

    keep_running = input("Make another walk? (y/n): ")
    if keep_running == 'n':
    #对应前面的无限循环,只有你下了n指令才会终止
        break

这段代码使用了NumPy和Matplotlib库进行数据分析和可视化。首先引入了NumPy库作为np,并引入了Matplotlib库的pyplot模块作为plt。

然后,从random_walk模块中引入了RandomWalk类,该模块在另一个文件中定义。这个类用于生成随机漫步数据。

接下来是一个无限循环,通过不断模拟随机漫步数据并进行可视化,直到用户输入'n'终止程序。

在每次循环中,首先创建一个RandomWalk实例rw,并调用其fill_walk()方法生成随机漫步数据。

然后,创建一个图形窗口,设置其大小为15x9,并创建一个子图对象ax。

接着,使用scatter()函数绘制散点图,传入rw.x_values和rw.y_values作为数据点的x和y坐标,c参数指定颜色映射,edgecolors参数指定边界颜色,s参数指定散点的大小。

最后,隐藏坐标轴,并使用plt.show()显示图形。

接下来,程序会提示用户输入是否继续进行下一次随机漫步模拟,只有输入'n'时才会跳出循环终止程序。

整体而言,这段代码使用了NumPy和Matplotlib库来生成并可视化随机漫步数据,通过循环不断模拟并展示结果,直到用户选择停止。这可以帮助分析和观察随机漫步的特征和趋势。

这个是最后模拟的图像

截屏2023-12-27 下午8.21.34.png

相关文章
|
20天前
|
算法 数据安全/隐私保护 开发者
马特赛特旋转算法:Python的随机模块背后的力量
马特赛特旋转算法是Python `random`模块的核心,由松本真和西村拓士于1997年提出。它基于线性反馈移位寄存器,具有超长周期和高维均匀性,适用于模拟、密码学等领域。Python中通过设置种子值初始化状态数组,经状态更新和输出提取生成随机数,代码简单高效。
103 63
|
6月前
|
开发工具 git Python
安装和使用`libnum`是一个用于数字理论函数的Python库
【6月更文挑战第19天】`libnum`是Python的数字理论函数库。安装可通过`git clone`,进入目录后运行`python setup.py install`,也可用`pip install libnum`。示例:使用`int_to_hex`将十进制数42转换为十六进制字符串&#39;2a&#39;。注意,信息可能已过时,应查最新文档以确保准确性。如遇问题,参考GitHub仓库或寻求社区帮助。
128 1
|
6月前
|
机器学习/深度学习 算法 TensorFlow
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
```markdown ## 摘要 全网同名「算法金」的作者分享了一篇针对Python机器学习入门的教程。教程旨在帮助零基础学习者掌握Python和机器学习,利用免费资源成为实践者。内容分为基础篇和进阶篇,覆盖Python基础、机器学习概念、数据预处理、科学计算库(如NumPy、Pandas和Matplotlib)以及深度学习(TensorFlow、Keras)。此外,还包括进阶算法如SVM、随机森林和神经网络。教程还强调了实践和理解最新趋势的重要性。
77 0
算法金 | 只需十四步:从零开始掌握Python机器学习(附资源)
|
7月前
|
人工智能 Python
Python中的反对称矩阵:理论、应用与代码实践
Python中的反对称矩阵:理论、应用与代码实践
119 1
|
7月前
|
Python
[重学Python]Day 2 Python经典案例简单习题6个
[重学Python]Day 2 Python经典案例简单习题6个
52 0
|
7月前
|
存储 关系型数据库 MySQL
Python工程师随机教学
Python工程师随机教学
|
7月前
|
机器学习/深度学习 Python
Python随机点名
Python随机点名
|
机器学习/深度学习 算法 数据安全/隐私保护
两万多字诠释python经典基础算法之100题【内含思路、程序和答案】【python小白必备】
本文为最最基础的python基础算法题目、思路和答案,适合python初学者使用,可以当作python入门算法工具书,虽然不具有高深的算法,但是都是企业级算法用的频率最多的,这也是学好高级算法的必经之路。希望收藏、关注、点赞哦。
|
Python
零基础Python教程037期 四种数字三角形,训练编程思维
零基础Python教程037期 四种数字三角形,训练编程思维
117 0
|
Python
python数据随机漫步,生成美图
python数据随机漫步,生成美图
138 0
python数据随机漫步,生成美图

热门文章

最新文章