带你读《Apache Doris 案例集》—— 01 招商信诺人寿 基于 Apache Doris 统一 OLAP 技术栈实践(2)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 带你读《Apache Doris 案例集》—— 01 招商信诺人寿 基于 Apache Doris 统一 OLAP 技术栈实践(2)

更多精彩内容,欢迎观看:

带你读《Apache Doris 案例集》—— 01 招商信诺人寿 基于 Apache   Doris 统一 OLAP 技术栈实践(1):https://developer.aliyun.com/article/1405781


架构2.0:基于Apache  Doris 统一技术栈  

image.png

 

数仓架构的两代版本主要在存储、计算、查询分析方面有很大不同。1.0版本依赖于多个组件共同构建 OLAP 分析引擎,在业务拓展阶段逐步出现架构存储冗余、数据延迟、维护成本过高等问题。架构2.0 版本基于Apache    Doris  升级改造,替换了Presto MySQL HBaseClickhouse 四个组件并将数据迁移至Apache Doris 中,以提供统一的对外查询服务。 

 

新架构不仅实现了技术栈的统一,还降低了开发、存储与运维等各方面的成本支出,实现了业务与数据的进一步统一。基于 Apache    Doris 一套系统能够同时支撑在线与离线任务处理,实现数据存储统一;能够满足了不同场景的数据分析服务,支持高吞吐的交互式分析与高并发的点查询,实现业务分析统一。


加速数据分析效率

 

通过 Doris极速分析性能,在面向C端用户的高并发点查询场景中,QPS  能够达到数千至数万,对于数亿或者数十亿数据的查询达到毫秒级响应; 利用 Doris丰富的数据导入方式和高效的写入能力,实现秒级写入时延,并利用Unique Key写时合并来进一步加速在并行读写阶段的查询性能。此外,我们还利用了Doris冷热分层将海量的历史冷数据存储于廉价的存储介质中,降低了历史数据的存储成本并提升了对热数据的查询效率。 

 

降低各类成本支出

 

新架构较于原有架构,核心组件的数量减少了一半,平台架构得以大幅简化,运维成本大大降低。此外,Apache Doris使数据无需再通过不同组件完成存储与查询服务,统一了实时与离线业务负载、降低了存储成本;数据服务API对外提供服务时也无需再合并实时与离线数据,使数据服务API 接入时的开发成本缩减至50%;

 

 

保证数据服务高可用

 

因为 Doris的统一存储、计算和服务的数仓架构,平台整体灾备方案易于实施,不再担心多个组件造成数据丢失、重复带来的问题。更重要的是,Doris自带的跨集群复制CCR  功能,能够提供集群间数据库表秒级至分钟级的同步,当系统崩溃导致业务中断或者丢失时,我们可以从备份中快速恢复。

 

 

Doris 跨集群复制 CCR 功能两大机制满足了我们在系统服务可用性方面的抢需求,保证了数据服务高可用,具体如下 

 

●Binlog 机制:当数据发生变更时,通过该机制我们可以自动记录数据修改的记录与操作,并

且对每个操作构建了递增序列的LogID,  实现数据的可追溯性与有序性。 

 

持久化机制:在系统崩溃或者发生突发事件后,通过该机制能够将数据持久化至磁盘来确保

数据的可靠性和一致性。 

 

保险一线业务收益与实践 

 

目前,基于Apache Doris 统一技术栈的实时数仓已经在2022Q3上线并投入生产环境使用, 用于支撑海量数据的 OLAP  高效分析能力,并在平台上支撑了更多业务相关的场景。在业 务经营方面,销售线索的规模也在不断扩大,目前已达到亿级。随着 Apache Doris的功能的进一步引入,由数仓支持的一线业务营收也在持续增长中。

 

销售线索高效追踪:目前,我们已经在销售与业绩类追踪上线30+新场景应用,业务人员能够基于销售线索准确、快速地获取客户在官网、APP、  商城、公众号、小程序等渠道的保险测评、直播参与数据、企微活动参与数据、免险投保等轨迹与数据,并通过Apache   Doris多维分析进行线索转化,最终实现精准触达客户、有效抓住客户动机、及时跟进成单。

 

客户留存信息高频更新:在新客户转化与老客户关怀类已上线20+新场景应用,业务场景的顺利进行离不开数据平台对于客户留存信息的高频更新能力,通过Apache Doris 对老客户数据定期分析,能够有效查询客户在不同阶段的保险业务需求,发现老客户的保障缺口,拓宽老客户可保边界,进一步增加业务经营收益。

 

业务场景数据一致打通: 在客户服务方面,我们更关注为客户提供一致化的体验与快速响应的服务。目前,我们已经上线了20+相关服务体验的新场景应用,避免出现信息不对称、数据不一致的情况,保证各个销售环节的数据在承保、理赔、客服咨询、会员中心等流程中能够一致统一。 

 

 未来规划 

 

ApacheDoris 的引入在实时数仓架构简化与性能提升方面起到了至关重要的作用。目前,我们已经基于 ApacheDoris替换了 PrestoClickhouseMySQLHBase多个组件以实现OLAP技术栈统一、各类成本降低,并提升导入与查询性能。

 

同时我们也计划进一步基于Doris在批处理层 (Batch Layer) 尝试应用,将离线数据批处理统一在Doris中进行,解决 Lambda  架构在实时和离线链路中成本叠加、无法兼容的问题,真正实现架构在计算、存储、分析的统一。同时,我们也将继续发挥 Doris统一的优势,利用 Multi-Catalog 让数据在湖与仓之间自由流动,实现数据湖和多种异构存储之上无缝且极速的分析服务,成为一套更完整、更开放统一的大数据技术生态系统。

 

非常感谢SelectDB团队一直以来对我们的技术支持。至此,招商信诺数据仓库不再局限于简单的报表场景,通过一套架构支撑了多种不同场景的数据分析、满足了实时与离线数据的统一写入与查询,为产品营销、客户运营、C端以及 B 端等业务提供数据价值,使保险人员更高效地获取数据、更准确地预知客户需求,为企业获得先机。

 

未来,我们也会持续参与到 Apache  Doris 社区建设中,贡献保险行业在实时数仓的建设经验与实践应用,希望Apache Doris不断发展壮大,为基础软件建设添砖加瓦!

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
7天前
|
SQL 存储 消息中间件
vivo基于Paimon的湖仓一体落地实践
本文整理自vivo互联网大数据专家徐昱在Flink Forward Asia 2024的分享,基于实际案例探讨了构建现代化数据湖仓的关键决策和技术实践。内容涵盖组件选型、架构设计、离线加速、流批链路统一、消息组件替代、样本拼接、查询提速、元数据监控、数据迁移及未来展望等方面。通过这些探索,展示了如何优化性能、降低成本并提升数据处理效率,为相关领域提供了宝贵的经验和参考。
368 3
vivo基于Paimon的湖仓一体落地实践
|
8天前
|
存储 缓存 Cloud Native
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
随着云基础设施的成熟,Apache Doris 3.0 正式支持了存算分离全新模式。基于这一架构,能够实现更低成本、极致弹性以及负载隔离。本文将介绍存算分离架构及其优势,并通过导入性能、查询性能、资源成本的测试,直观展现存算分离架构下的性能表现,为读者提供具体场景下的使用参考。
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
|
11天前
|
SQL 分布式计算 数据挖掘
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
|
21天前
|
SQL 缓存 数据处理
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
|
23天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
150 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
23天前
|
存储 SQL 数据挖掘
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
|
13天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
13天前
|
存储 分布式数据库 Apache
小米基于 Apache Paimon 的流式湖仓实践
小米基于 Apache Paimon 的流式湖仓实践
小米基于 Apache Paimon 的流式湖仓实践
|
16天前
|
存储 分布式数据库 Apache
小米基于 Apache Paimon 的流式湖仓实践
本文整理自Flink Forward Asia 2024流式湖仓专场分享,由计算平台软件研发工程师钟宇江主讲。内容涵盖三部分:1)背景介绍,分析当前实时湖仓架构(如Flink + Talos + Iceberg)的痛点,包括高成本、复杂性和存储冗余;2)基于Paimon构建近实时数据湖仓,介绍其LSM存储结构及应用场景,如Partial-Update和Streaming Upsert,显著降低计算和存储成本,简化架构;3)未来展望,探讨Paimon在流计算中的进一步应用及自动化维护服务的建设。
小米基于 Apache Paimon 的流式湖仓实践
|
11天前
|
SQL 分布式计算 Apache
Apache Doris 3.0.4 版本正式发布
该版本持续在存算分离、湖仓一体、异步物化视图等方面进行改进提升与问题修复

推荐镜像

更多