通义XR实验室文生3D模型开源,魔搭社区最佳实践来啦!

本文涉及的产品
对象存储 OSS,20GB 3个月
对象存储 OSS,内容安全 1000次 1年
对象存储 OSS,恶意文件检测 1000次 1年
简介: 通义实验室XR实验室重磅开源文生3D新模型,能够从一句文本描述构建3D模型及对应纹理,目前已经在Github面向外界开源!与该项技术一起开源的,还有通义实验室推出的Text-to-ND(文本生成深度、法向图)、Text-to-ND-MV(文本生成多视角的深度、法向图)两个大模型。我们先来直观感受一下这两个大模型的魔法能力:

引言

通义实验室XR实验室重磅开源文生3D新模型,能够从一句文本描述构建3D模型及对应纹理,目前已经在Github面向外界开源!与该项技术一起开源的,还有通义实验室推出的Text-to-ND(文本生成深度、法向图)、Text-to-ND-MV(文本生成多视角的深度、法向图)两个大模型。我们先来直观感受一下这两个大模型的魔法能力:

Text-to-ND大模型:

Text-to-ND-MV大模型:

为了满足不同开发者的需求,通义实验室XR实验室开源了Text-to-ND的基础版本以及Multi-View版本,满足不同细粒度的算法开发需求。不仅如此,还同步开源了从大模型中蒸馏出(Score Distillation Sampling) 3D模型的优化代码,串联可以完成文本直接到3D模型的生成。

Text-to-3D效果:

目前,魔搭社区提供一站式体验、下载、推理、训练教程,欢迎开发者小伙伴体验!

模型效果体验

ModelScope提供了创空间在线体验算法:

创空间体验链接:https://modelscope.cn/studios/Damo_XR_Lab/3D_AIGC/summary

模型下载

模型链接:

Text-to-ND、Text-to-ND-MV大模型:

https://modelscope.cn/models/Damo_XR_Lab/Normal-Depth-Diffusion-Model/summary

模型下载:

# 以linux系统为例
git clone https://github.com/modelscope/normal-depth-diffusion
cd normal-depth-diffuison && python tools/download_models/download_nd_models.py

模型推理

Text-to-ND、Text-to-ND-MV大模型推理:

# 模型下载
git clone https://github.com/modelscope/normal-depth-diffusion
cd normal-depth-diffuison && python tools/download_models/download_nd_models.py
# 安装依赖
conda create -n nd
conda activate md
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
pip install git+https://github.com/CompVis/taming-transformers.git
pip install webdataset
pip install img2dataset
# 或者使用dockerfile
sudo docker build -t mv3dengine_22.04:cu118 -f docker/Dockerfile .
# 进行推理
python demo_inference.sh

资源消耗:

Text-to-ND(512x512):

Text-to-ND-MV(256x256):

Text-to-3D模型推理:

## 代码及依赖项
git clone https://github.com/modelscope/RichDreamer.git --recursive
cd RichDreamer
conda create -n rd
conda activate rd
# install dependence of threestudio
pip install -r requirements_3d.txt
# Text-to-ND、Text-to-ND-MV模型下载
python tools/download_models/download_nd_models.py
# 拷贝256分辨率的DMTet资源文件
cp ./pretrained_models/Damo_XR_Lab/Normal-Depth-Diffusion-Model/256_tets.npz ./load/tets/
# 下载SD1.5及SD2.1(/path/to/${download_sd}是models_sd.tar.gz的本地地址)
bash prepare_sd_models.sh
## NeRF表达的推理
# 单张A100-80GB,Quick Start
python3 ./run_nerf.py -t $prompt -o $output
# 推理所有Prompts
# 例如 bash ./scripts/nerf/run_batch.sh 0 1 ./prompts.txt
bash ./scripts/nerf/run_batch.sh $start_id $end_id ${prompt.txt}
# 如果没有80GB VRAM的A100, 我们提供了一个24GB VRAM的inference脚本
# 可以在单张3090/4090进行推理.
python3 ./run_nerf.py -t $prompt -o $output -s 1
## DMTet表达的推理
# 单张A100-80GB,Quick Start
python3 ./run_dmtet.py -t $prompt -o $output
# 推理所有Prompts
# e.g. bash ./scripts/dmtet/run_batch.sh 0 1 ./prompts.txt
bash ./scripts/dmtet/run_batch.sh $start_id $end_id ${prompt.txt} 
# 如果没有80GB VRAM的A100, 我们提供了一个24GB VRAM的inference脚本
# 可以在单张3090/4090进行推理.
# 例如 bash ./scripts/dmtet/run_batch_fast.sh 0 1 ./prompts.txt
bash ./scripts/dmtet/run_batch_fast.sh $start_id $end_id ${prompt.txt}

模型训练

Text-to-3D是基于Text-to-ND、Text-to-ND-MV的优化算法,我们提供Text-to-ND、Text-to-ND-MV的模型训练步骤。

数据准备:

## 下载 Laion-2B-en-5-AES(训练ND模型)
# 从https://huggingface.co/datasets/laion/laion2B-en 下载filelist
# 将该文件放在 ./laion2b-dataset-5-aes 路径下
cd ./tools/download_dataset
bash ./download_2b-5_aes.sh
cd -
## 下载Objaverse多视角数据
# 从我们的分享链接下载objaverse_dataset, 上传需要大量时间
# 上传完毕我们会在https://github.com/modelscope/normal-depth-diffusion更新数据链接
ln -s /path/to/objaverse_dataset mvs_objaverse

深度估计及法向估计预训练模型准备:

# 法向估计模型
# https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/RichDreamer/scannet.pt
# 深度估计模型
# https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/RichDreamer/dpt_beit_large_512.pt
mv /path/to/scannet.pt ./libs/ControlNet-v1-1-nightly/annotator/normalbae/scannet.pt
mv /path/to/dpt_beit_large512.pt ./libs/omnidata_torch/pretrained_models/dpt_beit_large_512.pt

开始训练:

## 训练ND-VAE
# 下载预训练权重
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/RichDreamer/nd-vae-imgnet.ckpt
# 修改config文件 configs/autoencoder_normal_depth/autoencoder_normal_depth.yaml
model.ckpt_path=/path/to/nd-vae-imgnet.ckpt
# 训练启动
bash ./scripts/train_vae/train_nd_vae/train_rgbd_vae_webdatasets.sh \ model.ckpt_path=${pretained-VAE weights} \
data.params.train.params.curls='path_laion/{00000..${:5 id}.tar' \
--gpus 0,1,2,3,4,5,6,7
## 训练ND-Diffusion
# 训练完成ND-VAE之后,使用训练好的权重或者下载我们训练的版本
# https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/RichDreamer/nd-vae-laion.ckpt
# 步骤一
export SD-MODEL-PATH=/path/to/sd-1.5
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets.sh --gpus 0,1,2,3,4,5,6,7 \
    model.params.first_stage_ckpts=${Normal-Depth-VAE} model.params.ckpt_path=${SD-MODEL-PATH} \
    data.params.train.params.curls='path_laion/{00000..${:5 id}.tar'
# 步骤二 修改 ./configs/stable-diffusion/normald/sd_1_5/txt_cond/web_datasets/laion_2b_step2.yaml
# 中的model.params.ckpt_path 为第一步的权重地址。
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets_step2.sh --gpus 0,1,2,3,4,5,6,7 \
    model.params.first_stage_ckpts=${Normal-Depth-VAE} \
    model.params.ckpt_path=${pretrained-step-weights} \
    data.params.train.params.curls='path_laion/{00000..${:5 id}.tar'
## 训练Multi-View的ND-Diffusion
# 在训练完成ND-Diffusion之后得到预训练权重,或者下载我们训练的版本:
# https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/RichDreamer/nd-laion.ckpt
# 训练Multi-View的ND-Diffusion有两种训练方式,在latent-space计算loss以及经过VAE解码计算loss
# 目前版本我们提供latent-space计算loss的预训练模型,开发者也可以自己尝试训练经过VAE解码计算loss的版本
# 不经过VAE解码的版本
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_wovae_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7,  \
    model.params.ckpt_path=${Normal-Depth-Diffusion}
# 经过VAE解码的版本
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, \
    model.params.ckpt_path=${Normal-Depth-Diffusion}

训练曲线:

Text-to-ND:

Text-to-ND-MV:

欢迎Star相关开源仓库:

点击了解模型详情:modelscope.cn/models/Damo_XR_Lab/Normal-Depth-Diffusion-Model/summary

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
自然语言处理 API C++
阿里通义推出SmartVscode插件,自然语言控制VS Code,轻松开发应用,核心技术开源!
SmartVscode插件深度解析:自然语言控制VS Code的革命性工具及其开源框架App-Controller
|
4月前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
3748 19
|
19天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
269 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
26天前
|
人工智能 监控 算法
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
3D-Speaker是阿里巴巴通义实验室推出的多模态说话人识别开源项目,结合声学、语义和视觉信息,提供高精度的说话人识别和语种识别功能。项目包含工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,适用于多种应用场景。
209 18
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
|
1天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
|
22天前
|
人工智能 测试技术 开发者
通义发布最强开源多模态推理模型QVQ!
通义发布最强开源多模态推理模型QVQ!
380 18
|
1月前
|
机器学习/深度学习 人工智能 达摩院
ClearerVoice-Studio:阿里通义开源的语音处理框架,提供语音增强、分离和说话人提取等功能
ClearerVoice-Studio 是阿里巴巴达摩院通义实验室开源的语音处理框架,集成了语音增强、分离和音视频说话人提取等功能。该框架基于复数域深度学习算法,能够有效消除背景噪声,保留语音清晰度,并提供先进的预训练模型和训练脚本,支持研究人员和开发者进行语音处理任务。
301 3
ClearerVoice-Studio:阿里通义开源的语音处理框架,提供语音增强、分离和说话人提取等功能
|
23天前
|
机器学习/深度学习 算法 网络协议
开源上新|通义语音处理技术ClearerVoice-Studio
开源上新|通义语音处理技术ClearerVoice-Studio
|
23天前
|
人工智能 算法 数据挖掘
开源更新|通义3D-Speaker多说话人日志功能
开源更新|通义3D-Speaker多说话人日志功能
|
2月前
|
人工智能 自然语言处理
ACE:阿里通义实验室推出的全能图像生成和编辑模型
ACE是阿里巴巴通义实验室推出的全能图像生成和编辑模型,基于扩散变换器,支持多模态输入和多任务处理。该模型通过长上下文条件单元(LCU)和统一条件格式,能够理解和执行自然语言指令,实现图像生成、编辑和多轮交互等复杂任务,显著提升视觉内容创作的效率和灵活性。
161 3
ACE:阿里通义实验室推出的全能图像生成和编辑模型

热门文章

最新文章