Python读取栅格遥感影像并加以辐射校正后导出为Excel的一列数据

简介: Python读取栅格遥感影像并加以辐射校正后导出为Excel的一列数据

  本文介绍基于Python语言中的gdal模块,读取一景.tif格式的栅格遥感影像文件,提取其中每一个像元的像素数值,对像素值加以计算(辐射定标)后,再以一列数据的形式将计算后的各像元像素数据保存在一个.csv格式文件中的方法。

  首先,我们明确一下本文的需求。现在有一个栅格遥感影像文件,其为.tiff格式的文件(但其实和.tif格式文件的操作方法是一样的),且像元的数值都是真实数值乘上10000之后的。这一遥感影像如下图所示,可以看到其各个波段的像元像素数据都是几百、几千的范围。

  我们现在希望,对于这一景遥感影像的第一个波段(如果大家需要对多个波段加以这一操作,那么就在本文的代码中加以循环,分别对多个波段依次加以同样的处理就好),提取出其中每一个像元的数值;随后对提取出来的数据加以辐射定标,即除以10000,并将结果保存在一个.csv格式文件中,且以一列的形式来保存。这里本文之所以需要用多行一列而非多行多列矩阵格式来存放数据,是因为后面需要将这些像素数据当作神经网络的预测样本,即一行表示一个样本,所以就需要保存为多行一列;如果大家需要保存为多行多列矩阵格式,那代码的思路还是一致的,就是在导出数据之前将其保存为二维矩阵格式的变量就好。

  知道了需求,我们就可以开始代码的撰写;具体代码如下。

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 29 01:32:28 2023
@author: fkxxgis
"""
import csv
from osgeo import gdal
file_path = "E:/04_Reconstruction/05_Image_Test/GF1WFV4.16m.2021252035621.48STB.000000_SR.tiff"
dataset = gdal.Open(file_path, gdal.GA_ReadOnly)
band = dataset.GetRasterBand(1)
data = band.ReadAsArray()
dataset = None
data = data * 0.0001
data_one_column = data.flatten()
csv_file = "E:/04_Reconstruction/05_Image_Test/column_1.csv"
with open(csv_file, 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerow(["Value"])
    writer.writerows([[value] for value in data_one_column])

  其中,我们首先导入所需的库。在这里,csv库用于处理.csv格式文件,gdal库(从osgeo模块中导入)则用于读取和处理遥感影像文件;随后,定义遥感影像文件路径——file_path用来指定要读取的遥感影像文件的路径。

  接下来,我们打开遥感影像文件。dataset = gdal.Open(file_path, gdal.GA_ReadOnly)意味着我们以只读方式打开遥感影像文件,并将返回的Dataset对象赋值给变量dataset;随后,获取第一个波段的像元值,这可以通过band = dataset.GetRasterBand(1)来完成(需要注意,这里波段编号的索引是从1开始的);随后,data = band.ReadAsArray()意思是将波段的像元值读取为一个二维数组,并将结果赋值给变量data。随后,我们需要关闭遥感影像文件,通过将dataset变量设为None,释放对遥感影像文件的引用,从而关闭文件。

  其次,我们对像元值进行处理。首先,完成辐射定标,也就是通过data = data * 0.0001将像元值乘以0.0001;随后,将处理后的像元值按列展平——在这里,data_one_column = data.flatten()表示我们使用flatten()方法将二维数组展平为一维数组,并将结果赋值给变量data_one_column

  最后,将上述处理好的数据写入.csv格式文件。其中,csv_file指定要写入的.csv格式文件的路径;with open(csv_file, 'w', newline='') as file表示我们使用open()函数打开.csv格式文件,并创建一个csv.writer对象,同时指定文件的写入模式为覆盖写入'w'writer.writerow(["Value"])意味着我们写入.csv格式文件的第一行,即表头,这里是一个标题为Value的列;最后,writer.writerows([[value] for value in data_one_column])通过迭代data_one_column中的每个值,并将其作为单独的列表传递给writer.writerows()方法,从而将每个值写入.csv格式文件的一行中。

  运行上述代码,即可得到如下图所示的结果.csv格式文件。

  其中,第一行就是我们的列名;后面几行数据都是0,这是由于原本的遥感影像在左上角区域NoData值(大家看我们本文的第一张图就能看到)导致的。如果往下继续拖动这个.csv格式文件,就会看到处理后的非0数据了。

  至此,大功告成。

欢迎关注:疯狂学习GIS

相关文章
|
7月前
|
Python
如何根据Excel某列数据为依据分成一个新的工作表
在处理Excel数据时,我们常需要根据列值将数据分到不同的工作表或文件中。本文通过Python和VBA两种方法实现该操作:使用Python的`pandas`库按年级拆分为多个文件,再通过VBA宏按班级生成新的工作表,帮助高效整理复杂数据。
|
7月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
4月前
|
人工智能 Java Linux
Python高效实现Excel转PDF:无Office依赖的轻量化方案
本文介绍无Office依赖的Python方案,利用Spire.XLS、python-office、Aspose.Cells等库实现Excel与PDF高效互转。支持跨平台部署、批量处理、格式精准控制,适用于服务器环境及自动化办公场景,提升转换效率与系统稳定性。
556 7
|
9月前
|
存储 安全 大数据
网安工程师必看!AiPy解决fscan扫描数据整理难题—多种信息快速分拣+Excel结构化存储方案
作为一名安全测试工程师,分析fscan扫描结果曾是繁琐的手动活:从海量日志中提取开放端口、漏洞信息和主机数据,耗时又易错。但现在,借助AiPy开发的GUI解析工具,只需喝杯奶茶的时间,即可将[PORT]、[SERVICE]、[VULN]、[HOST]等关键信息智能分类,并生成三份清晰的Excel报表。告别手动整理,大幅提升效率!在安全行业,工具党正碾压手动党。掌握AiPy,把时间留给真正的攻防实战!官网链接:https://www.aipyaipy.com,解锁更多用法!
|
4月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
500 0
|
7月前
|
开发工具 Python
使用Python和OpenAPI将云上的安全组规则填写入Excel
本文介绍如何通过Python脚本自动化获取阿里云安全组及其规则信息,并将结果导出为Excel表格。相比CLI命令行方式,Python实现更高效、便捷,适用于需要批量处理和交付的场景。
使用Python和OpenAPI将云上的安全组规则填写入Excel
|
7月前
|
Python
Excel中如何批量重命名工作表与将每个工作表导出到单独Excel文件
本文介绍了如何在Excel中使用VBA批量重命名工作表、根据单元格内容修改颜色,以及将工作表导出为独立文件的方法。同时提供了Python实现导出工作表的代码示例,适用于自动化处理Excel文档。
|
7月前
|
Python
将Excel特定某列数据删除
将Excel特定某列数据删除
|
9月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
380 2
|
8月前
|
Java 测试技术 数据库
spring号码归属地批量查询,批量查询号码归属地,在线工具,可按省份城市运营商号段分类分开分别导出excel表格
简介:文章探讨Spring Boot项目启动优化策略,通过自定义监听器、异步初始化及分库分表加载优化等手段,将项目启动时间从280秒缩短至159秒,提升约50%,显著提高开发效率。

推荐镜像

更多