每天一道大厂SQL题【Day28】腾讯数据提取(一)搞笑类型视频的曝光点赞数据

简介: 每天一道大厂SQL题【Day28】腾讯数据提取(一)搞笑类型视频的曝光点赞数据

第28题 需求一: 搞笑类型视频的曝光点赞数据

1. 需求列表

需求方需要视频号搞笑类型视频的曝光点赞时长等数据,请提供一张 ads 表。搞笑类型视频定义:视频类型为搞笑或者视频创建者类型为搞笑

需要产出字段:视频 id,视频创建者 user_id,视频创建者名称、当天曝光次数、当天点赞次数、近 30 天曝光次数、近 30 天点赞次数

思路分析

第一步,我先从视频表和用户行为表中筛选出当天的搞笑类型视频的曝光点赞数据,按照视频 id 和视频创建者 user_id 分组求和,得到一个子表 a。

第二步,我再从视频创建者表中获取视频创建者名称,和子表 a 连接,得到一个子表 b。

第三步,我再从视频表和用户行为表中筛选出近 30 天的搞笑类型视频的曝光点赞数据,按照视频 id 分组求和,得到一个子表 c。

第四步,我把子表 b 和子表 c 连接,得到最终的 ads 表,并插入到分区为 20210718 的目标表中。

答案获取

建议你先动脑思考,动手写一写再对照看下答案,如果实在不懂可以点击下方卡片关注, 回复:大厂sql 即可。

参考答案适用HQL,SparkSQL,FlinkSQL,即大数据组件,其他SQL需自行修改。

加技术群讨论

点击下方卡片关注后 联系我进群

附表

用户行为表:t_user_video_action_d分区:ds(格式 yyyyMMdd) 主键:user_id、video_id

含义:一个 user 对一个视频的所有行为聚合,每天增量字段:

字段名 字段含义 类型
user_id 用 户 id string
video_id 视 频 id string
expose_cnt 曝光次数 int
like_cnt 点赞次数 int

视频表:t_video_d

分区:ds(格式 yyyyMMdd)主键:video_id

含义:当天全量视频数据字段:

字段名 字段含义 类型 枚举
video_id 视 频 id string
video_type 视频类型 string 娱乐、新闻、搞笑
video_user_id 视频创建者 user_id string
video_create_time 视频创建时间 bigint

作者表:t_video_user_d

分区:ds(格式 yyyyMMdd)主键:video_user_id

含义:当天全量视频创建者数据

字段名 字段含义 类型 枚举
video_user_id 视频创建者 user_id string
video_user_name 名称 string
video_user_type 视频创建者类型 string 娱乐、新闻、搞笑
-- 建表
create table if not exists t_user_video_action_d (
user_id string comment "用户id", video_id string comment "视频id", expose_cnt int comment "曝光次数", like_cnt  int comment "点赞次数"
)
partitioned by (ds string);
create table if not exists t_video_d (
video_id  string comment ' 视 频 id', video_type    string comment ' 视 频 类 型 ', video_user_id     string comment '视频创建者user_id', video_create_time bigint comment '视频创建时间'
)
partitioned by (ds string);
create table if not exists t_video_user_d (
video_user_id string comment '视频创建者user_id', video_user_name string comment ' 名 称 ', video_user_type string comment '视频创建者类型'
)
partitioned by (ds string);

文末SQL小技巧

提高SQL功底的思路。

1、造数据。因为有数据支撑,会方便我们根据数据结果去不断调整SQL的写法。

造数据语法既可以create table再insert into,也可以用下面的create temporary view xx as values语句,更简单。

其中create temporary view xx as values语句,SparkSQL语法支持,hive不支持。

2、先将结果表画出来,包括结果字段名有哪些,数据量也画几条。这是分析他要什么。

从源表到结果表,一路可能要走多个步骤,其实就是可能需要多个子查询,过程多就用with as来重构提高可读性。

3、要由简单过度到复杂,不要一下子就写一个很复杂的。

先写简单的select from table…,每个中间步骤都执行打印结果,看是否符合预期, 根据中间结果,进一步调整修饰SQL语句,再执行,直到接近结果表。

4、数据量要小,工具要快,如果用hive,就设置set hive.exec.mode.local.auto=true;如果是SparkSQL,就设置合适的shuffle并行度,set spark.sql.shuffle.partitions=4;

目录
相关文章
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
864 43
|
4月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
334 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
5月前
|
SQL
SQL如何只让特定列中只显示一行数据
SQL如何只让特定列中只显示一行数据
|
9月前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
263 4
|
5月前
|
SQL
SQL中如何删除指定查询出来的数据
SQL中如何删除指定查询出来的数据
|
5月前
|
SQL 关系型数据库 MySQL
SQL如何对不同表的数据进行更新
本文介绍了如何将表A的Col1数据更新到表B的Col1中,分别提供了Microsoft SQL和MySQL的实现方法,并探讨了多表合并后更新的优化方式,如使用MERGE语句提升效率。适用于数据库数据同步与批量更新场景。
|
7月前
|
SQL 数据挖掘 关系型数据库
【SQL 周周练】一千条数据需要做一天,怎么用 SQL 处理电表数据(如何动态构造自然月)
题目来自于某位发帖人在某 Excel 论坛的求助,他需要将电表缴费数据按照缴费区间拆开后再按月份汇总。当时用手工处理数据,自称一千条数据就需要处理一天。我将这个问题转化为 SQL 题目。
278 12
|
6月前
|
SQL DataWorks 数据管理
SQL血缘分析实战!数据人必会的3大救命场景
1. 开源工具:Apache Atlas(元数据管理)、Spline(血缘追踪) 2. 企业级方案:阿里DataWorks血缘分析、腾讯云CDW血缘引擎 3. 自研技巧:在ETL脚本中植入版本水印,用注释记录业务逻辑变更 📌 重点总结:
|
7月前
|
SQL 数据采集 资源调度
【SQL 周周练】爬取短视频发现数据缺失,如何用 SQL 填充
爬虫爬取抖音和快手的短视频数据时,如果遇到数据缺失的情况,如何使用 SQL 语句完成数据的补全。
204 5